, Volume 803, Issue 1, pp 251–263 | Cite as

Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa

  • Marco Fusi
  • Simone Babbini
  • Folco Giomi
  • Sara Fratini
  • Farid Dahdouh-Guebas
  • Daniele Daffonchio
  • Christopher David McQuaid
  • Francesca Porri
  • Stefano Cannicci


Mangrove forests are amongst the tropical marine ecosystems most severely affected by rapid environmental change, and the activities of key associated macrobenthic species contribute to their ecological resilience. Along the east coast of Africa, the amphibious sesarmid crab Neosarmatium africanum (=meinerti) plays a pivotal role in mangrove ecosystem functioning through carbon cycling and sediment bioturbation. In the face of rapid climate change, identifying the sensitivity and vulnerability to global warming of this species is of increasing importance. Based on a latitudinal comparison, we measured the thermal sensitivity of a tropical and a temperate population of N. africanum, testing specimens at the centre and southern limit of its distribution, respectively. We measured metabolic oxygen consumption and haemolymph dissolved oxygen content during air and water breathing within a temperature range that matched the natural environmental conditions. The results indicate different thermal sensitivities in the physiological responses of N. africanum from tropical and temperate populations, especially during air breathing. The differences observed in the thermal physiology between the two populations suggest that the effect of global warming on this important mangrove species may be different under different climate regimes.


Sesarmidae Decapods Tropical and temperate wetlands Oxygen consumption Haemolymph Physiology Populations 



The study was supported by SP3-People (Marie Curie) IRSES Project CREC (No. 247514). FG was funded by the Intra-European Fellowship (ex Marie Curie) Number 221017, FP7. This work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation. MF and DD were supported also by DD baseline funding from King Abdullah University of Science and Technology (KAUST). We thank Jenny Marie Booth, Sara Cilio, Bruce Mostert, Laura Sbaragli and Irene Ortolani for fundamental help during Kenyan and South African laboratory and fieldwork.

Compliance with ethical standards

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. Furthermore, all procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.


  1. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. Permanova + for primer: guide to software and statistical methods, 1st edn. Primer-E, Plymouth, 214 p.Google Scholar
  2. Andreetta, A., M. Fusi, I. Cameldi, F. Cimò, S. Carnicelli & S. Cannicci, 2014. Mangrove carbon sink. Do burrowing crabs contribute to sediment carbon storage? Evidence from a Kenyan mangrove system. Journal of Sea Research 85: 524–533.CrossRefGoogle Scholar
  3. Baldanzi, S., N. F. Weidberg, M. Fusi, S. Cannicci, C. D. Mcquaid & F. Porri, 2015. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis. Oecologia 179: 1067–1078.CrossRefPubMedGoogle Scholar
  4. Bates, D. M., 2010. Fitting linear mixed-effects models using lme4.
  5. Berti, R., S. Cannicci, S. Fabbroni & G. Innocenti, 2008. Notes on the structure and the use of Neosarmatium meinerti and Cardisoma carnifex burrows in a Kenyan mangrove swamp (Decapoda Brachyura). Ethology Ecology & Evolution 20: 101–113.CrossRefGoogle Scholar
  6. Bright, D. B. & C. L. Hogue, 1972. A synopsis of the burrowing land crabs of the world and list of their arthropod symbionts and burrow associates. Una sinopsis mundial de los cangrejos terrestres de madrigueras y lista de sus artrópodos simbiontes y madrigueras asociadas. Contributions in Science 20: 1–58.Google Scholar
  7. Clarke, A. & K. P. P. Fraser, 2004. Why does metabolism scale with temperature? Functional Ecology 18: 243–251.CrossRefGoogle Scholar
  8. Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak & P. R. Martin, 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America 105: 6668–6672.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dittmann, S., 1996. Effects of macrobenthic burrows on infaunal communities in tropical tidal flats. Marine Ecology Progress Series 134: 119–130.CrossRefGoogle Scholar
  10. Duke, N., J. O. Meynecke, S. Dittmann, A. M. Ellison, K. Anger, U. Berger, S. Cannicci, K. Diele, K. C. Ewel, C. D. Field, N. Koedam, S. Y. Lee, C. Marchand, I. Nordhaus & F. Dahdouh-Guebas, 2007. A world without mangroves? Science 317: 41–43.CrossRefPubMedGoogle Scholar
  11. Edney, E. B., 1961. The water and heat relationship of fiddler crabs (Uca spp.). Transactions of the Royal Society of South Africa 36: 71–91.CrossRefGoogle Scholar
  12. Eliason, E. J., T. D. Clark, M. J. Hague, L. M. Hanson, Z. S. Gallagher, K. M. Jeffries, M. K. Gale, D. A. Patterson, S. G. Hinch & A. P. Farrell, 2011. Differences in thermal tolerance among sockeye salmon populations. Science 332: 109–112.CrossRefPubMedGoogle Scholar
  13. Fratini, S., A. Sacchi & M. Vannini, 2011. Competition for mangrove leaf litter between two East African crabs, Neosarmatium meinerti (Sesarmidae) and Cardisoma carnifex (Gecarcinidae): a case of kleptoparasitism? Journal of Ethology 29: 481–485.CrossRefGoogle Scholar
  14. Frederich, M. & H. O. Pörtner, 2000. Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology 279: R1531–R1538.PubMedGoogle Scholar
  15. Fusi, M., F. Giomi, S. Babbini, D. Daffonchio, C. D. McQuaid, F. Porri & S. Cannicci, 2015. Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming. Oikos 124: 784–795.CrossRefGoogle Scholar
  16. Fusi, M., S. Cannicci, D. Daffonchio, B. Mostert, H.-O. Pörtner & F. Giomi, 2016. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface. Scientific Reports Nature Publishing Group 6: 19158.CrossRefGoogle Scholar
  17. Gaitán-Espitia, J. D., L. D. Bacigalupe, T. Opitz, N. A. Lagos, T. Timmermann & M. A. Lardies, 2014. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. The Journal of experimental biology 217: 4379–4386.CrossRefPubMedGoogle Scholar
  18. Gaston, K. J., S. L. Chown, P. Calosi, J. Bernardo, D. T. Bilton, A. Clarke, S. Clusella-Trullas, C. K. Ghalambor, M. Konarzewski, L. S. Peck, W. P. Porter, H. O. Pörtner, E. L. Rezende, P. M. Schulte, J. I. Spicer, J. H. Stillman, J. S. Terblanche & M. van Kleunen, 2009. Macrophysiology: a conceptual reunification. The American Naturalist 174: 595–612.CrossRefPubMedGoogle Scholar
  19. Gillikin, D. P., S. De Grave & J. Tack, 2001. The occurrence of the semi-terrestrial shrimp Merguia oligodon (De Man, 1888) in Neosarmatium smithi H. Milne Edwards, 1853 burrows in Kenyan mangroves. Crustaceana 74: 505–507.CrossRefGoogle Scholar
  20. Gillikin, D. P., B. De Wachter & J. F. Tack, 2004. Physiological responses of two ecologically important Kenyan mangrove crabs exposed to altered salinity regimes. Journal of Experimental Marine Biology and Ecology 301: 93–109.CrossRefGoogle Scholar
  21. Gilman, E. L., J. Ellison, N. C. Duke & C. Field, 2008. Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany 89: 237–250.CrossRefGoogle Scholar
  22. Giomi, F. & H.-O. Pörtner, 2013. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs. Frontiers in Physiology 4: 110.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Giomi, F., C. Mandaglio, M. Ganmanee, G.-D. Han, Y.-W. Dong, G. A. Williams & G. Sarà, 2016. The importance of thermal history: costs and benefits of heat exposure in a tropical, rocky shore oyster. The Journal of experimental biology 219: 686–694.CrossRefPubMedGoogle Scholar
  24. Greenaway, P. & C. A. Farrelly, 1984. The venous system of the terrestrial crab Ocypode cordimanus (Desmarest 1825) with particular reference to the vasculature of the lungs. Journal of Morphology 181: 133–142.CrossRefGoogle Scholar
  25. Hartnoll, R. G., 1975. The Grapsidae and Ocypodidae (Decapoda: Brachyura) of Tanzania. Journal of Zoology 177: 305–328.CrossRefGoogle Scholar
  26. Hochachka, P. W., 1991. Temperature: the ectothermy option Phylogenetic and biochemical perspectives. Biochemistry and Molecular Biology of Fishes 1: 313–322.CrossRefGoogle Scholar
  27. Hoegh-Guldberg, O. & J. F. Bruno, 2010. The impact of climate change on the world’s marine ecosystems. Science (New York, N.Y.) 328: 1523–1528.CrossRefGoogle Scholar
  28. Huey, R. B., M. R. Kearney, A. Krockenberger, J. A. M. Holtum, M. Jess & S. E. Williams, 2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367: 1665–1679.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kearney, M. & W. Porter, 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.CrossRefPubMedGoogle Scholar
  30. Kearney, M. R., A. Matzelle & B. Helmuth, 2012. Biomechanics meets the ecological niche: the importance of temporal data resolution. Journal of Experimental Biology 215: 1422–1424.CrossRefGoogle Scholar
  31. Kitheka, J. U., B. O. Ohowa, B. M. Mwashote, W. S. Shimbira, J. M. Mwaluma & J. M. Kazungu, 1996. Water circulation dynamics, water column nutrients and plankton productivity in a well-flushed tropical bay in Kenya. Journal of Sea Research 35: 257–268.CrossRefGoogle Scholar
  32. Kristensen, E., 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. Journal of Sea Research 59: 30–43.CrossRefGoogle Scholar
  33. Lee, S. Y., 1997. Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma masse. Marine Ecology Progress Series 159: 275–284.CrossRefGoogle Scholar
  34. Lee, S. Y., 2008. Mangrove macrobenthos: assemblages, services, and linkages. Journal of Sea Research 59: 16–29.CrossRefGoogle Scholar
  35. Lovelock, C. E., D. R. Cahoon, D. A. Friess, G. R. Guntenspergen, K. W. Krauss, R. Reef, K. Rogers, M. L. Saunders, F. Sidik, A. Swales, N. Saintilan, L. X. Thuyen & T. Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526: 559.CrossRefPubMedGoogle Scholar
  36. Macnae, W., 1968. A general account of the fauna and Flora of Mangrove Swamps and Forests in the Indo-West-Pacific Region. Advanced in marine Biology 6: 73–270.CrossRefGoogle Scholar
  37. Macnae, W. & M. Kalk, 1962. The ecology of the Mangrove Swamps at Inhaca Island, Mozambique. Journal of Ecology 50: 19–34.CrossRefGoogle Scholar
  38. Marshall, D. J. & C. D. McQuaid, 2011. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proceedings Biological sciences/The Royal Society 278: 281–288.CrossRefGoogle Scholar
  39. Marshall, D. J., C. D. McQuaid & G. A. Williams, 2011. Non-climatic thermal adaptation: implications for species’ responses to climate warming. Biology Letters 7: 160.CrossRefGoogle Scholar
  40. Marshall, D. J., N. Baharuddin & C. D. McQuaid, 2013. Behaviour moderates climate warming vulnerability in high-rocky-shore snails: interactions of habitat use, energy consumption and environmental temperature. Marine Biology 160: 2525–2530.CrossRefGoogle Scholar
  41. Micheli, F., F. Gherardi & M. Vannini, 1991. Feeding and burrowing ecology of two East African mangrove crabs. Marine Biology 111: 247–254.CrossRefGoogle Scholar
  42. Nemeth, Z., F. Bonier & S. MacDougall-Shackleton, 2013. Coping with uncertainty: integrating physiology, behavior, and evolutionary ecology in a changing world. Integrative and Comparative Biology 53: 960–964.CrossRefPubMedGoogle Scholar
  43. Paaijmans, K. P., R. L. Heinig, R. A. Seliga, J. I. Blanford, S. Blanford, C. C. Murdock & M. B. Thomas, 2013. Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology 19: 2373–2380.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Poloczanska, E. S., C. J. Brown, W. J. Sydeman, W. Kiessling, D. S. Schoeman, P. J. Moore, K. Brander, J. F. Bruno, L. B. Buckley, M. T. Burrows, C. M. Duarte, B. S. Halpern, J. Holding, C. V. Kappel, M. I. O’Connor, J. M. Pandolfi, C. Parmesan, F. Schwing, S. A. Thompson & A. J. Richardson, 2013. Global imprint of climate change on marine life. Nature Climate Change 3: 919–925.CrossRefGoogle Scholar
  45. Porter, W. & D. Gates, 1969. Thermodynamic equilibria of animals with environment. Ecological Monographs 39: 227–244.CrossRefGoogle Scholar
  46. Pörtner, H., 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88: 137–146.CrossRefPubMedGoogle Scholar
  47. Quisthoudt, K., J. Adams, A. Rajkaran, F. Dahdouh-Guebas, N. Koedam & C. F. Randin, 2013. Disentangling the effects of global climate and regional land-use change on the current and future distribution of mangroves in South Africa. Biodiversity and Conservation 22: 1369–1390.CrossRefGoogle Scholar
  48. R Development Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,
  49. Ragionieri, L., S. Cannicci, C. D. Schubart & S. Fratini, 2010. Gene flow and demographic history of the mangrove crab Neosarmatium meinerti: a case study from the western Indian Ocean. Estuarine, Coastal and Shelf Science 86: 179–188.CrossRefGoogle Scholar
  50. Ragionieri, L., S. Fratini & C. D. Schubart, 2012. Revision of the Neosarmatium meinerti species complex (Decapoda: Brachyura: Sesarmidae), with descriptions of three pseudocryptic Indo-West Pacific species. The Raffles Bulletin of Zoology 60: 71–87.Google Scholar
  51. Rajkaran, A. & J. Adams, 2012. The effects of environmental variables on mortality and growth of mangroves at Mngazana Estuary, Eastern Cape, South Africa. Wetlands Ecology and Management 20: 297–312.CrossRefGoogle Scholar
  52. Rezende, E. L., L. E. Castaneda & M. Santos, 2014. Tolerance landscapes in thermal ecology. Functional Ecology 28: 799–809.CrossRefGoogle Scholar
  53. Ridd, P. V., 1996. Flow through animal burrows in Mangrove creeks. Estuarine, Coastal and Shelf Science 43: 617–625.CrossRefGoogle Scholar
  54. Roznik, E. A. & R. A. Alford, 2012. Does waterproofing Thermochron iButton dataloggers influence temperature readings? Journal of Thermal Biology Elsevier 37: 260–264.CrossRefGoogle Scholar
  55. Schurmann, H. & J. F. Steffensen, 1992. Lethal oxygen levels at different temperatures and the preferred temperature during hypoxia of the Atlantic cod, Gadus morhua L. Journal of Fish Biology 41: 927–934.CrossRefGoogle Scholar
  56. Sih, A., J. Stamps, L. H. Yang, R. McElreath & M. Ramenofsky, 2010. Behavior as a key component of integrative biology in a human-altered world. Integrative and Comparative Biology 50: 934–944.CrossRefPubMedGoogle Scholar
  57. Sinclair, B. J., K. E. Marshall, M. A. Sewell, D. L. Levesque, C. S. Willett, S. Slotsbo, Y. Dong, C. D. G. Harley, D. J. Marshall, B. S. Helmuth & R. B. Huey, 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters 19: 1372–1385.CrossRefPubMedGoogle Scholar
  58. Smith, T. J., K. G. Boto, S. D. Frusher & R. L. Giddins, 1991. Keystone species and mangrove forest dynamics: the influence of burrowing by crabs on soil nutrient status and forest productivity. Estuarine, Coastal and Shelf Science 33: 419–432.CrossRefGoogle Scholar
  59. Stieglitz, T., P. Ridd & P. Müller, 2000. Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp. Hydrobiologia 421: 69–76.CrossRefGoogle Scholar
  60. Stuart-Smith, R. D., G. J. Edgar, N. S. Barrett, S. J. Kininmonth & A. E. Bates, 2015. Thermal biases and vulnerability to warming in the world’ s marine fauna. Nature Nature Publishing Group 528: 1–17.Google Scholar
  61. Sunday, J. M., A. E. Bates & N. K. Dulvy, 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings Biological sciences/The Royal Society 278: 1823–1830.CrossRefGoogle Scholar
  62. Sunday, J. M., A. E. Bates & N. K. Dulvy, 2012. Thermal tolerance and the global redistribution of animals. Nature Climate Change Nature Publishing Group 2: 686–690.CrossRefGoogle Scholar
  63. Sunday, J. M., A. E. Bates, M. R. Kearney, R. K. Colwell, N. K. Dulvy, J. T. Longino & R. B. Huey, 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America 111: 5610–5615.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Terblanche, J. S., A. A. Hoffmann, K. A. Mitchell, L. Rako, P. C. Roux & S. L. Chown, 2011. Ecologically relevant measures of tolerance to potentially lethal temperatures. 10: 3713–3725.Google Scholar
  65. Tomlinson, P. B., 1986. The botany of mangroves. Cambridge Tropical Biology Series. 234: 373–374.Google Scholar
  66. Verberk, W. C. E. P., F. Bartolini, D. J. Marshall, H.-O. Pörtner, J. S. Terblanche, C. R. White & F. Giomi, 2015. Can respiratory physiology predict thermal niches? Annals of the New York Academy of Sciences 179: 1–16.Google Scholar
  67. Verberk, W. C. E. P., J. Overgaard, R. Ern, M. Bayley, T. Wang, L. Boardman & J. S. Terblanche, 2016. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Biochemistry and Physiology -Part A: Molecular and Integrative Physiology The Authors 192: 64–78.CrossRefGoogle Scholar
  68. Warren, J. H. & A. J. Underwood, 1986. Effects of burrowing crabs on the topography of mangrove swamps in New South Wales. Journal of Experimental Marine Biology and Ecology 102: 223–235.CrossRefGoogle Scholar
  69. Williams, S. E., L. P. Shoo, J. L. Isaac, A. A. Hoffmann & G. Langham, 2008. Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change. PLoS Biology 6: 6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Marco Fusi
    • 1
  • Simone Babbini
    • 2
  • Folco Giomi
    • 3
  • Sara Fratini
    • 2
  • Farid Dahdouh-Guebas
    • 4
    • 5
  • Daniele Daffonchio
    • 1
  • Christopher David McQuaid
    • 6
  • Francesca Porri
    • 6
    • 7
  • Stefano Cannicci
    • 8
    • 2
  1. 1.Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  2. 2.Department of BiologyUniversity of FlorenceSesto FiorentinoItaly
  3. 3.Department of Agronomy Food Natural resources Animals and Environment (DAFNAE)University of PadovaLegnaroItaly
  4. 4.Laboratory of Systems Ecology and Resource Management, Department of Organism Biology, Faculty of SciencesUniversité Libre de Bruxelles – ULBBrusselsBelgium
  5. 5.Ecology & Biodiversity, Laboratorium voor Algemene Plantkunde en Natuurbeheer (APNA), Department of Biology, Faculty of Sciences and Bio-engineering SciencesVrije Universiteit Brussel – VUBBrusselsBelgium
  6. 6.Coastal Research Group, Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
  7. 7.South African Institute for Aquatic Biodiversity (SAIAB)Somerset Street6139South Africa
  8. 8.The Swire Institute of Marine Science and The School of Biological SciencesThe University of Hong KongPok Fu LamHong Kong

Personalised recommendations