, Volume 795, Issue 1, pp 267–279 | Cite as

Temperature effects on periphyton, epiphyton and epipelon under a nitrogen pulse in low-nutrient experimental freshwater lakes

  • Yu Cao
  • Saara Olsen
  • María Florencia Gutierrez
  • Sandra Brucet
  • Thomas A. Davidson
  • Wei Li
  • Torben L. Lauridsen
  • Martin Søndergaard
  • Erik Jeppesen
Primary Research Paper


The ongoing global climate change involves not only increased temperatures but may also produce more frequent extreme events, such as severe rainfall that could trigger a pulse of nutrients to lakes. In shallow lakes, this may affect primary producers through a number of direct and indirect mechanisms. We conducted a six-month mesocosm experiment to elucidate how periphyton (on inert substrata), epiphyton and epipelon biomass responded to a nitrogen (N) pulse, an approximately tenfold enrichment of the NO3-pool, under three contrasting warming scenarios: ambient temperature and ca. +3°C and ca. +4.5°C elevated temperatures (hereafter T1, T2 and T3). After the N pulse, we found a higher periphyton biomass at elevated than at ambient temperatures but no change in epiphyton biomass. Epipelon biomass was lower in T3 than in T1. Both periphyton and epiphyton biomasses correlated negatively with snail biomass, while epiphyton biomass correlated positively with light. Different responses to higher temperatures under short-term extreme nutrient loading conditions may be attributed to differences in the access to nutrient sources and light. Our data suggest that the biomass of periphyton in oligotrophic clear-water lakes will increase significantly under conditions exhibiting short-term extreme nutrient loading in a warmer climate.


Heated Climate Extreme event Nutrient pulse Loading 



This study was supported by National Natural Science Foundation of China (31170340, 31500296), CSC (The China Scholarship Council), CLEAR (a Villum Kann Rasmussen Centre of Excellence project) and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (, PROGNOS (Predicting in-lake RespOnses to chanGe using Near real time mOdelS - Water Joint Programme Initiative) and AQUACOSM (Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean). M.F.G.’s contribution was supported by the Argentinean Council of Scientific and Technical Research (CONICET). S.B.’s contribution was supported by the Marie Curie Intra European Fellowship No. 330249 (CLIMBING). We thank Anne Mette Poulsen for valuable editorial comments.


  1. Aizaki, M., 1980. Changes in standing crop and photosynthetic rate attendant on the film development of periphyton in a shallow eutrophic river. Japanese Journal of Limnology (Rikusuigaku Zasshi) 41: 225–234.CrossRefGoogle Scholar
  2. Baulch, H. M., D. W. Schindler, M. A. Turner, D. L. Findlay, M. J. Paterson & R. D. Vinebrooke, 2005. Effects of warming on benthic communities in a boreal lake: implications of climate change. Limnology and Oceanography 50: 1377–1392.CrossRefGoogle Scholar
  3. Blumenshine, S. C., Y. Vadeboncoeur, D. M. Lodge, K. L. Cottingham & S. E. Knight, 1997. Benthic-pelagic links: responses of benthos to water-column nutrient enrichment. Journal of the North American Benthological Society 16: 466–479.CrossRefGoogle Scholar
  4. Cao, Y., W. Li & E. Jeppesen, 2014. The response of two submerged macrophytes and periphyton to elevated temperatures in the presence and absence of snails: a microcosm approach. Hydrobiologia 738: 49–59.CrossRefGoogle Scholar
  5. Casco, M. A., M. E. Mac Donagh, M. G. Cano, L. C. Solari, M. C. Claps & N. A. Gabellone, 2009. Phytoplankton and epipelon responses to clear and turbid phases in a seepage lake (Buenos Aires, Argentina). International Review of Hydrobiology 94: 153–168.CrossRefGoogle Scholar
  6. Cattaneo, A. & M. Amireault, 1992. How artificial are artificial substrata for periphyton? Journal of the North American Benthological Society 11: 244–256.CrossRefGoogle Scholar
  7. Cattaneo, A. & J. Kalff, 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnology and Oceanography 25: 280–289.CrossRefGoogle Scholar
  8. Connor, M. S., J. M. Teal & I. Valiela, 1982. The effect of feeding by mud snails, Ilyanassa obsoleta (Say), on the structure and metabolism of a laboratory benthic algal community. Journal of Experimental Marine Biology and Ecology 65: 29–45.CrossRefGoogle Scholar
  9. Doyle, S. A., J. E. Saros & C. E. Williamson, 2005. Interactive effects of temperature and nutrient limitation on the response of alpine phytoplankton growth to ultraviolet radiation. Limnology and Oceanography 50: 1362–1367.CrossRefGoogle Scholar
  10. Ebina, J., T. Tsutsui & T. Shirai, 1983. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Research 17: 1721–1726.CrossRefGoogle Scholar
  11. Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada & R. C. Genova, 2014. IPCC, 2014: climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  12. Guariento, R. D., A. Caliman, F. A. Esteves, R. L. Bozelli, A. Enrich-Prast & V. F. Farjalla, 2009. Substrate influence and temporal changes on periphytic biomass accrual and metabolism in a tropical humic lagoon. Limnologica 39: 209–218.CrossRefGoogle Scholar
  13. Hickman, M., 1974. Effects of the discharge of thermal effluent from a power station on Lake Wabamun, Alberta, Canada - the epipelic and epipsamic algal communities. Hydrobiologia 45: 199–215.CrossRefGoogle Scholar
  14. Iwan Jones, J., B. Moss, J. W. Eaton & J. O. Young, 2000. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshwater Biology 43: 591–604.CrossRefGoogle Scholar
  15. Jenkerson, G. C. & M. Hickman, 1986. Interrelationships among the epipelon, epiphyton and phytoplankton in a eutrophic lake. International Review of Hydrobiology 71: 557–579.CrossRefGoogle Scholar
  16. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, M. Beklioglu & A. Özen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.CrossRefPubMedGoogle Scholar
  17. Jeppesen, E., T. Mehner, I. J. Winfield, K. Kangur, J. Sarvala, D. Gerdeaux, M. Rask, H. J. Malmquist, K. Holmgren, P. Volta, S. Romo, R. Eckmann, A. Sandström, S. Blanco, A. Kangur, H. Ragnarsson Stabo, M. Tarvainen, A. M. Ventelä, M. Søndergaard, T. L. Lauridsen & M. Meerhoff, 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 1–39.CrossRefGoogle Scholar
  18. Jespersen, A.-M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.Google Scholar
  19. Kirk, J. T. O., 1977. Attenuation of light in natural waters. Marine and Freshwater Research 28: 497–508.CrossRefGoogle Scholar
  20. Kosten, S., E. Jeppesen, V. L. M. Huszar, N. Mazzeo, E. H. Van Nes, E. T. H. M. Peeters & M. Scheffer, 2011. Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshwater Biology 56: 1540–1553.CrossRefGoogle Scholar
  21. Lalonde, S. & J. A. Downing, 1991. Epiphyton biomass is related to lake trophic status, depth, and macrophyte architecture. Canadian Journal of Fisheries and Aquatic Sciences 48: 2285–2291.CrossRefGoogle Scholar
  22. Lauridsen, T. L., J. P. Jensen, E. Jeppesen & M. Søndergaard, 2003. Response of submerged macrophytes in Danish lakes to nutrient loading reductions and biomanipulation. Hydrobiologia 506: 641–649.CrossRefGoogle Scholar
  23. Li, K. Y., Z. W. Liu & B. H. Gu, 2009. Density-dependent effects of snail grazing on the growth of a submerged macrophyte, Vallisneria spiralis. Ecological Complexity 6: 438–442.CrossRefGoogle Scholar
  24. Liboriussen, L. & E. Jeppesen, 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48: 418–431.CrossRefGoogle Scholar
  25. Liboriussen, L. & E. Jeppesen, 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology 51: 95–109.CrossRefGoogle Scholar
  26. Liboriussen, L., F. Landkildehus, M. Meerhoff, M. E. Bramm, M. Søndergaard, K. Christoffersen, K. Richardson, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2005. Global warming: design of a flow-through shallow lake mesocosm climate experiment. Limnology and Oceanography: Methods 3: 1–9.CrossRefGoogle Scholar
  27. Liu, X., X. Lu & Y. Chen, 2011. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae 10: 337–343.CrossRefGoogle Scholar
  28. Lodge, D. M., 1985. Macrophyte-gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshwater Biology 15: 695–708.CrossRefGoogle Scholar
  29. López-Figueroa, F. & W. Rüdiger, 1991. Stimulation of nitrate net uptake and reduction by red and blue light and reversion by far-red light in the green alga Ulva rigida. Journal of Phycology 27: 389–394.CrossRefGoogle Scholar
  30. McCollum, E. W., L. B. Crowder & S. Andy McCollum, 1998. Complex interactions of fish, snails, and littoral zone periphyton. Ecology 79: 1980–1994.CrossRefGoogle Scholar
  31. McCormick, P., R. E. Shuford III, J. Backus & W. Kennedy, 1997. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.A. Hydrobiologia 362: 185–210.CrossRefGoogle Scholar
  32. McKee, D., D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson & B. Moss, 2003. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnology and Oceanography 48: 707–722.CrossRefGoogle Scholar
  33. Mckee, D., K. Hatton, J. W. Eaton, D. Atkinson, A. Atherton, I. Harvey & B. Moss, 2002. Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquatic Botany 74: 71–83.CrossRefGoogle Scholar
  34. Meerhoff, M., J. M. Clemente, F. T. de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  35. Mormul, R. P., S. M. Thomaz, M. J. da Silveira & L. Rodrigues, 2010. Epiphyton or macrophyte: Which primary producer attracts the snail Hebetancylus moricandi? American Malacological Bulletin 28: 127–133.CrossRefGoogle Scholar
  36. Moss, B., S. Kosten, M. Meerhoff, R. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. Liu & L. De Meester, 2011. Allied attack: climate change and eutrophication. Inland Waters 1: 101–105.CrossRefGoogle Scholar
  37. Patrick, D. A., N. Boudreau, Z. Bozic, G. S. Carpenter, D. M. Langdon, S. R. LeMay, S. M. Martin, R. M. Mourse, S. L. Prince & K. M. Quinn, 2012. Effects of climate change on late-season growth and survival of native and non-native species of watermilfoil (Myriophyllum spp.): implications for invasive potential and ecosystem change. Aquatic Botany 103: 83–88.CrossRefGoogle Scholar
  38. R Development Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [available on internet at].
  39. Roberts, E., J. Kroker, S. Körner & A. Nicklisch, 2003. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia 506: 525–530.CrossRefGoogle Scholar
  40. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  41. Schindler, D. W., S. E. Bayley, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. U. Schindler & M. P. Stainton, 1996. The effects of climatic warming on the properties of boreal lakes and streams at the experimental lakes area, northwestern Ontario. Limnology and Oceanography 41: 1004–1017.CrossRefGoogle Scholar
  42. Shurin, J. B., J. L. Clasen, H. S. Greig, P. Kratina & P. L. Thompson, 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 3008–3017.CrossRefGoogle Scholar
  43. Solomon, S., D. Qin, M. Manning, Z. Chen, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, C. E. Hanson, T. Barker, I. Bashmakov, L. Bernstein, J. Bogner, P. Bosch, R. Dave, O. Davidson, B. Fisher, M. Grubb, S. Gupta, K. Halsnaes, B. Heij, S. K. Ribeiro, S. Kobayashi, M. Levine & D. Martino, 2007. IPCC, 2007: Summary for policymakers climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Google Scholar
  44. Tarkowska-Kukuryk, M. & T. Mieczan, 2012. Effect of substrate on periphyton communities and relationships among food web components in shallow hypertrophic lake. Journal of Limnology 71: 279–290.CrossRefGoogle Scholar
  45. Trochine, C., M. E. Guerrieri, L. Liboriussen, T. L. Lauridsen & E. Jeppesen, 2014. Effects of nutrient loading, temperature regime and grazing pressure on nutrient limitation of periphyton in experimental ponds. Freshwater Biology 59: 905–917.CrossRefGoogle Scholar
  46. Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.CrossRefGoogle Scholar
  47. van Dijk, G. M., 1993. Dynamics and attenuation characteristics of periphyton upon artificial substratum under various light conditions and some additional observations on periphyton upon Potamogeton pectinatus L. Hydrobiologia 252: 143–161.CrossRefGoogle Scholar
  48. Watermann, F., H. Hillebrand, G. Gerdes, W. E. Krumbein & U. Sommer, 1999. Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Marine Ecology Progress Series 187: 77–87.CrossRefGoogle Scholar
  49. Yvon-Durocher, G., J. M. Montoya, G. Woodward, J. I. Jones & M. Trimmer, 2011. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Global Change Biology 17: 1225–1234.CrossRefGoogle Scholar
  50. Zhang, Z., E. Jeppesen, W. Li & Y. Cao, 2016. The response of Vallisneria spinulosa (Hydrocharitaceae) and plankton to pulse addition of inorganic nitrogen with different loading patterns. Hydrobiologia 767: 175–184.CrossRefGoogle Scholar
  51. Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Statistics for Biology and Health.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Yu Cao
    • 1
    • 2
    • 3
  • Saara Olsen
    • 3
    • 4
  • María Florencia Gutierrez
    • 5
  • Sandra Brucet
    • 3
    • 6
    • 7
  • Thomas A. Davidson
    • 3
  • Wei Li
    • 2
    • 4
  • Torben L. Lauridsen
    • 3
    • 4
  • Martin Søndergaard
    • 3
  • Erik Jeppesen
    • 3
    • 4
  1. 1.Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
  2. 2.Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
  3. 3.Lake Ecology Section, Department of BioscienceAarhus UniversitySilkeborgDenmark
  4. 4.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  5. 5.Instituto Nacional de Limnología (CONICET-UNL)Ciudad UniversitariaSanta FeArgentina
  6. 6.Aquatic Ecology GroupUniversity of Vic - Central University of CataloniaVicSpain
  7. 7.ICREACatalan Institution for Research and Advanced StudiesBarcelonaSpain

Personalised recommendations