, Volume 795, Issue 1, pp 35–48 | Cite as

Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover

  • Martin Søndergaard
  • Torben L. Lauridsen
  • Liselotte S. Johansson
  • Erik Jeppesen
Primary Research Paper


We used data on nutrients, chlorophyll a (Chla) and submerged macrophyte cover from up to 817 Danish lakes to elucidate seasonal variations in nitrogen (N) and phosphorus (P) concentrations and to study the impact of N or its role in combination with P. In both deep and shallow lakes, we found marked seasonality in the ratio between total N and total P (TN:TP) and in the inorganic concentrations of nitrogen (DIN), indicating that N more easily becomes a limiting nutrient as summer proceeds. TN:TP reached its lowest values of <7 (by mass) in August in 25% of the shallow lakes. Chla generally related more strongly to TP than to TN, but at high TP concentrations TN explained more of the variability in Chla than TP. Macrophyte cover tended to decrease at increasing TN when TP was between 0.1 and 0.4 mg/l. At macrophyte cover above 20%, Chla was considerably lower compared with lakes with low macrophyte cover. We conclude that P is of key importance for the ecological quality of Danish lakes but that increased N concentrations, particularly in shallow lakes with moderate to high TP, may have significantly adverse effects on lake water quality and ecological status in summer.


Danish lakes Nutrients Seasonality Chlorophyll a TN:TP ratio 



The project was supported by the EU project MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme and by CLEAR (a Villum Kann Rasmussen Centre of Excellence project). The Danish regional environmental authorities are acknowledged for their careful lake monitoring and data collection. Anne Mette Poulsen and Tinna Christensen are acknowledged for editorial and layout assistance.


  1. Abell, J., D. Özkundakci & D. Hamilton, 2010. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems 13: 966–977.CrossRefGoogle Scholar
  2. Barko, J. W. & W. F. James, 1998. Effect of Submersed Aquatic Macrophytes on Nutrients Dynamics, Sedimentation and Resuspension. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes, Ecological Studies 131. Springer, New York: 197–214.CrossRefGoogle Scholar
  3. Barker, T., K. Hatton, M. O’Connor, L. Connor & B. Moss, 2008. Effects of nitrate load on submerged plant bio-mass and species richness: results of a mesocosm experiment. Fundamental Applied Limnology 173: 89–100.CrossRefGoogle Scholar
  4. Bergström, A.-K. & M. Jannson, 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern Hemisphere. Global Change Biology 12: 63–643.CrossRefGoogle Scholar
  5. Camarero, L. & J. Catalan, 2012. Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation. Nature Communications 3: 1118.CrossRefPubMedGoogle Scholar
  6. Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.CrossRefGoogle Scholar
  7. Carpenter, S., N. Caraco, D. Correll, R. Howarth, A. Sharpley & V. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.CrossRefGoogle Scholar
  8. Chaffin, J. D., T. B. Bridgeman, D. L. Bade & C. N. Mobilian, 2014. Summer phytoplankton nutrient limitation in Maumee Bay of Lake Erie during high-flow and low-flow years. Journal of Great Lakes Research 40: 524–531.CrossRefGoogle Scholar
  9. Conley, D. J., H. W. Pearl, R. W. Howarth, D. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot & G. E. Likens, 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.CrossRefPubMedGoogle Scholar
  10. Davis, T. W., G. S. Bullerjahn, T. Tuttle, R. M. McKay & S. B. Watson, 2015. Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during Planktothrix blooms in Sandusky Bay, Lake Erie. Environmental Science & Technology 49: 7197–7207.CrossRefGoogle Scholar
  11. Dolman, A. M., U. Mischke & C. Wiedner, 2016. Lake-type-specific seasonal patterns of nutrient limitation in German lakes, with target nitrogen and phosphorus concentrations for good ecological status. Freshwater Biology 61: 444–456.CrossRefGoogle Scholar
  12. Donald, D. B., M. J. Bogard, K. Finlay, L. Bunting & P. R. Leavitt, 2013. Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea. PLoS ONE 8: e53277.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dove, A. & S. C. Chapra, 2015. Long-term trends of nutrients and trophic response variables for the Great Lakes. Limnology & Oceanography 60: 696–721.CrossRefGoogle Scholar
  14. Downing, J. A. & E. McCauley, 1992. The nitrogen: phosphorus relationship in lakes. Limnology & Oceanography 37: 936–945.CrossRefGoogle Scholar
  15. Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecological Letters 10: 1135–1142.CrossRefGoogle Scholar
  16. Gonzalez Sagrario, M. A., E. Jeppesen, J. Goma, M. Søndergaard, J. P. Jensen & T. Lauridsen, 2005. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology 50: 27–41.CrossRefGoogle Scholar
  17. Guildford, S. J. & R. E. Hecky, 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology & Oceanography 45: 1213–1223.CrossRefGoogle Scholar
  18. Holmroos, H., J. Horppila, J. Niemisto, L. Nurminen & S. Hietanen, 2015. Dynamics of dissolved nutrients among different macrophyte stands in a shallow lake. Limnology 16: 31–39.CrossRefGoogle Scholar
  19. Håkanson, L., A. C. Bryhn & J. K. Hytteborn, 2007. On the issue of limiting nutrients and predictions of cyanobacteria in aquatic systems. Science Total Environment 379: 89–108.CrossRefGoogle Scholar
  20. James, C., J. Fisher & B. Moss, 2003. Nitrogen driven lakes: The Shropshire and Cheshire Meres? Archive für Hydrobiologie 158: 249–266.CrossRefGoogle Scholar
  21. Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries & Aquatic Science 51: 1692–1699.CrossRefGoogle Scholar
  22. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.CrossRefGoogle Scholar
  23. Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), 1998. The Structuring Role of Submerged Macrophytes in Lakes, Ecological Studies 131. Springer, New York.Google Scholar
  24. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes. changes along a phosphorus gradient. Freshwater Biology 45: 2012–2018.CrossRefGoogle Scholar
  25. Jeppesen, E., B. Kronvang, J. E. Olesen, J. Audet, M. Søndergaard, C. C. Hoffmann, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, S. E. Larsen, M. Beklioglu, M. Meerhoff, A. Özen & K. Özkan, 2011. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663: 1–21.CrossRefGoogle Scholar
  26. Kolzau, S., C. Wiedner, J. Rücker, J. Köhler, A. Köhler & A. M. Dolman, 2014. Seasonal patterns of nitrogen and phosphorus limitation in four German lakes and the predictability of limitation status from ambient nutrient concentrations. PLoS ONE 9: e96065.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kufel, L. & I. Kufel, 2002. Chara beds acting as nutrient sinks in shallow lakes—a review. Aquatic Botany 72: 249–260.CrossRefGoogle Scholar
  28. Lewis Jr., W. M. & W. A. Wurtsbaugh, 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiology 93: 446–465.CrossRefGoogle Scholar
  29. Mischler, J. A., P. G. Taylor & A. R. Townsend, 2014. Nitrogen limitation on pond ecosystems on the plains of eastern Colorado. PloS One 9(5): e95757.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Moss, B., E. Jeppesen, M. Søndergaard, T. L. Lauridsen & Z. Liu, 2013. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia 710: 3–21.CrossRefGoogle Scholar
  31. Müller, S. & S. M. Mitrovic, 2015. Phytoplankton co-limitation by nitrogen and phosphorus in a shallow reservoir: progressing from the phosphorus limitation paradigm. Hydrobiologia 744: 255–269.CrossRefGoogle Scholar
  32. Nikolai, S. J. & A. R. Dzialowski, 2014. Effects of internal phosphorus loading on nutrient limitation in a eutrophic reservoir. Limnologica 49: 33–41.CrossRefGoogle Scholar
  33. OECD, 1982. Eutrophication of Waters—Monitoring, Assessment and Control. Organisation for Economic Co-operation and Development, Paris: 154.Google Scholar
  34. Olsen, S., E. Jeppesen, B. Moss, K. Özkan, M. Beklioglu, H. Feuchtmayr, M. G. Sagrario, L. Wei, S. Larsen, T. L. Lauridsen & M. Søndergaard, 2015a. Factors influencing nitrogen processing in lakes: an experimental approach. Freshwater Biology 60: 646–662.CrossRefGoogle Scholar
  35. Olsen, S., F. Chan, W. Li, S. Zhao, M. Søndergaard & E. Jeppesen, 2015b. Strong impact of nitrogen loading on submerged macrophytes and algae: a long-term mesocosm experiment in a shallow Chinese lake. Freshwater Biology 60: 1525–1536.CrossRefGoogle Scholar
  36. Özkan, K., E. Jeppesen, L. S. Johansson & M. Beklioglu, 2010. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in warm lakes: a mesocosm experiment. Freshwater Biology 54: 463–475.CrossRefGoogle Scholar
  37. Paerl, H. W., 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology & Oceanography 33: 823–847.Google Scholar
  38. Paerl, H. W., H. Xu, M. J. McCarthy, G. W. Zhu, B. Q. Qin, Y. P. Li & W. S. Gardner, 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N and P) management strategy. Water Research 45: 1973–1983.CrossRefPubMedGoogle Scholar
  39. Phillips, G., O.-P. Pietiläinen, L. Carvalho, A. Solimini, A. Lyche Solheim & A. C. Cardoso, 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.CrossRefGoogle Scholar
  40. Poikane, S., R. Portielje, M. van den Berg, G. Phillips, S. Brucet, L. Carvalho, U. Mischke, I. Ott, H. Soszka & J. Van Wichelen, 2014. Defining ecologically relevant water quality targets for lakes in Europe. Journal of Applied Ecology 51: 592–602.CrossRefGoogle Scholar
  41. Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.Google Scholar
  42. Saunders, D. L. & J. Kalff, 2001. Denitrification rates in the sediments of Lake Memphremagog, Canada–USA. Water Research 35: 1897–1904.CrossRefPubMedGoogle Scholar
  43. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.CrossRefPubMedGoogle Scholar
  44. Schindler, D. W. & R. E. Hecky, 2009. Eutrophication: more nitrogen data needed. Science 324: 721–722.CrossRefPubMedGoogle Scholar
  45. Smith, V. H. & S. J. Bennet, 1999. Nitrogen:phosphorus supply ratios and phytoplankton community structure in lakes. Archiv für Hydrobiologie 146: 37–53.CrossRefGoogle Scholar
  46. Smith, S. M. & K. D. Lee, 2006. Responses of periphyton to artificial nutrient enrichment in freshwater kettle ponds of Cape Cod National Seashore. Hydrobiologia 571: 201–211.CrossRefGoogle Scholar
  47. Sterner, R. W., 2008. On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology 93: 433–445.CrossRefGoogle Scholar
  48. Svendsen, L.M., L. van der Bijl, S. Boutrup & B. Norup, B. eds), 2005. NOVANA. National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Programme Description, part 2. NERI Technical Report No. 537. National Environmental Research Institute, Aarhus, Denmark. 13C89536/0/FR537_www_S_H.pdf.Google Scholar
  49. Søndergaard, M., J. P. Jensen & E. Jeppesen, 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408(409): 145–152.CrossRefGoogle Scholar
  50. Søndergaard, M., J. P. Jensen, E. Jeppesen & P. H. Møller, 2002. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquatic Ecosystem Health Management 5: 19–29.CrossRefGoogle Scholar
  51. Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liboriussen & E. Jeppesen, 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology 55: 893–908.CrossRefGoogle Scholar
  52. Søndergaard, M., S. E. Larsen, T. B. Jørgensen & E. Jeppesen, 2011. Using chlorophyll a and cyanobacteria in the ecological classification of lakes. Ecological Indicators 11: 1403–1412.CrossRefGoogle Scholar
  53. Søndergaard, M., R. Bjerring & E. Jeppesen, 2013. Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 710: 95–107.CrossRefGoogle Scholar
  54. Søndergaard, M., S. E. Larsen, L. S. Johansson, T. L. Lauridsen & E. Jeppesen, 2016. Ecological classification of lakes: uncertainty and the influence of year-to-year variability. Ecological Indicators 61: 248–257.CrossRefGoogle Scholar
  55. Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh & K. Foreman, 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology & Oceanography 42: 1105–1118.CrossRefGoogle Scholar
  56. Vitousek, P. M. & R. W. Howarth, 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13: 87–115.CrossRefGoogle Scholar
  57. Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’lstituto Italiano di Idrolnologia 33: 53–83.Google Scholar
  58. Windolf, J., E. Jeppesen, J. P. Jensen & P. Kristensen, 1996. Modelling of seasonal variation in nitrogen retention and in-lake concentration: a four-year mass balance study in 16 shallow Danish lakes. Biogeochemistry 33: 25–44.CrossRefGoogle Scholar
  59. Xu, H., H. W. Paerl, B. Q. Qin, G. W. Zhu & G. Gao, 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology & Oceanography 55: 420–432.CrossRefGoogle Scholar
  60. Yu, Q., H. Z. Wang, Y. Li, J. C. Shao, X. M. Liang, E. Jeppesen & H. J. Wang, 2015. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations. Water Research 83: 385–395.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Sino-Danish Centre for Education and ResearchBeijingChina

Personalised recommendations