, Volume 794, Issue 1, pp 287–301 | Cite as

Effects of water level regulation in alpine hydropower reservoirs: an ecosystem perspective with a special emphasis on fish

  • Philipp E. Hirsch
  • Antti P. Eloranta
  • Per-Arne Amundsen
  • Åge Brabrand
  • Julie Charmasson
  • Ingeborg P. Helland
  • Michael Power
  • Javier Sánchez-Hernández
  • Odd Terje Sandlund
  • Julian F. Sauterleute
  • Sigrid Skoglund
  • Ola Ugedal
  • Hong Yang
Primary Research Paper


Sustainable development of hydropower demands a holistic view of potential impacts of water level regulation (WLR) on reservoir ecosystems. Most environmental studies of hydropower have focused on rivers, whereas environmental effects of hydropower operations on reservoirs are less well understood. Here, we synthesize knowledge on how WLR from hydropower affects alpine lake ecosystems and highlight the fundamental factors that shape the environmental impacts of WLR. Our analysis of these impacts ranges from abiotic conditions to lower trophic levels and ultimately to fish. We conclude that the environmental effects are complex and case-specific and thus considering the operational regime of WLR (i.e. amplitude, timing, frequency, and rate of change) as well as the reservoir’s morphometry, geology and biotic community are prerequisites for any reliable predictions. Finally, we indicate promising avenues for future research and argue that recording and sharing of data, views and demands among different stakeholders, including operators, researchers and the public, is necessary for the sustainable development of hydropower in alpine lakes.


Benthic production Food web Hydro-electricity Littoral zone Renewable energy Sustainability 



The study was part of the projects HydroBalance, BiWA, and ECCO (228714, 221410, 224779) as well as the FME-centre CEDREN (193818), all funded by the Research Council of Norway. PE Hirsch was supported by the Research Centre for Sustainable Energy and Water Supply (FoNEW) at the University of Basel and is grateful to Prof. P. Burkhardt-Holm for providing infrastructure and support. J Sánchez-Hernández was supported by a postdoctoral grant from the Galician Plan for Research, Innovation, and Growth 2011–2015 (Plan I2C, Xunta de Galicia). Additionally, H. Yang was supported by Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University (No. 2015HLG02).


  1. Aass, P., 1969. Crustacea, especially Lepidurus arcticus Pallas, as brown trout food in Norwegian mountain reservoirs. Institute of Freshwater Research Drottningholm Report 49: 183–201.Google Scholar
  2. Aass, P., 1986. Management and utilization of Arctic charr in Norwegian hydroelectric reservoirs In Johnson, L. & B. L. Burns (eds), Biology of the Arctic charr, Proceedings of the International Symposium on Arctic charr, vol. 39. University Manitoba Press Winnipeg Winnipeg, Manotoba: 277–291.Google Scholar
  3. Aass, P., 1990. Ecological effects and fishery problems related to Norwegian mountain reservoirs. Ingénieurs et Architectes Suisses 16: 419–424.Google Scholar
  4. Aass, P., C. S. Jensen, J. H. L’Abée-Lund & L. A. Vøllestad, 2004. Long-term variation in the population structure of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta. Fisheries Management and Ecology 11: 125–134.CrossRefGoogle Scholar
  5. Adams, S. M. (ed.), 1990. Biological Indicators of Stress in Fish. America Fisheries Society Symposium 8. American Fisheries Society, Bethesda, MD.Google Scholar
  6. Adams, S. M. (ed.), 2002. Biological Indicators of Aquatic Ecosystem Stress. American Fisheries Society, Bethesda, MD.Google Scholar
  7. Aroviita, J. & H. Hämäläinen, 2008. The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia 613: 45–56.CrossRefGoogle Scholar
  8. Ask, J., J. Karlsson, L. Persson, P. Ask, P. Byström & M. Jansson, 2009. Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. Ecology 90: 1923–1932.CrossRefPubMedGoogle Scholar
  9. Bakken, T. H., T. Forseth & A. Harby (eds), 2016. Miljøvirkninger av effektkjøring: Kunnskapsstatus og råd til forvaltning og industri. NINA Temahefte 62: 205 pp. (in Norwegian).Google Scholar
  10. Bartels, P., P. E. Hirsch, R. Svanbäck & P. Eklöv, 2012. Water transparency drives intra-population divergence in Eurasian perch (Perca fluviatilis). PLoS ONE 7: e43641.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baxter, R. M., 1977. Environmental effects of dams and impoundments. Annual Review of Ecology and Systematics 8: 255–283.CrossRefGoogle Scholar
  12. Bonalumi, M., F. S. Anselmetti, R. Kaegi & A. Wueest, 2011. Particle dynamics in high-Alpine proglacial reservoirs modified by pumped-storage operation. Water Resources Research 47: W09523.CrossRefGoogle Scholar
  13. Bonalumi, M., F. S. Anselmetti, A. Wueest & M. Schmid, 2012. Modeling of temperature and turbidity in a natural lake and a reservoir connected by pumped-storage operations. Water Resources Research 48: W08508.CrossRefGoogle Scholar
  14. Borgstrøm, R., Å. Brabrand & J. T. Solheim, 1992. Effects of siltation on resource utilization and dynamics of allopatric brown trout, Salmo trutta, in a reservoir. Environmental Biology of Fishes 34: 247–255.CrossRefGoogle Scholar
  15. Brabrand, Å., A. G. Koestler & R. Borgstrøm, 2002. Lake spawning of brown trout related to groundwater influx. Journal of Fish Biology 60: 751–776.CrossRefGoogle Scholar
  16. Campbell, C. E., R. Knoechel & D. Copeman, 1998. Evaluation of factors related to increased zooplankton biomass and altered species composition following impoundment of a Newfoundland reservoir. Canadian Journal of Fisheries and Aquatic Sciences 55: 230–238.CrossRefGoogle Scholar
  17. Cantonati, M. & R. L. Lowe, 2014. Lake benthic algae: toward and understanding of their ecology. Freshwater Science 33: 475–486.CrossRefGoogle Scholar
  18. Clark, M. E., K. A. Rose, J. A. Chandler, T. J. Richter, D. J. Orth & W. van Winkle, 2008. Water-level fluctuation effects on centrarchid reproductive success in reservoirs: a modeling analysis. North American Journal of Fisheries Management 28: 1138–1156.CrossRefGoogle Scholar
  19. Collen, B., F. Whitton, E. E. Dyer, J. E. M. Baillie, N. Cumberlidge, W. R. T. Darwall, C. Pollock, N. I. Richman, A.-M. Soulsby & M. Böhm, 2014. Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51.CrossRefPubMedGoogle Scholar
  20. Cott, P. A., P. K. Sibley, W. M. Somers, M. R. Lilly & A. M. Gordon, 2008. A review of water level fluctuations on aquatic biota with an emphasis on fishes in ice-covered lakes. Journal of the American Water Resources Association 44: 343–359.CrossRefGoogle Scholar
  21. Craig, N., S. E. Jones, B. C. Weidel & C. T. Solomon, 2015. Habitat, not resource availability, limits consumer production in lake ecosystems. Limnology and Oceanography 60: 2079–2089.CrossRefGoogle Scholar
  22. Dieter, D., C. Herzog & M. Hupfer, 2015. Effects of drying on phosphorus uptake in re-flooded lake sediments. Environmental Science and Pollution Research 22: 17065–17081.CrossRefPubMedGoogle Scholar
  23. Eloranta, A. P., R. Knudsen & P.-A. Amundsen, 2013. Niche segregation of coexisting Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) constrains food web coupling in subarctic lakes. Freshwater Biology 58: 207–221.CrossRefGoogle Scholar
  24. Eloranta, A. P., K. K. Kahilainen, P.-A. Amundsen, R. Knudsen, C. Harrod & R. I. Jones, 2015. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecology and Evolution 5: 1664–1675.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eloranta, A. P., I. P. Helland, O. T. Sandlund, T. Hesthagen, O. Ugedal & A. G. Finstad, 2016a. Community structure influences species’ abundance along environmental gradients. Journal of Animal Ecology 85: 273–282.CrossRefPubMedGoogle Scholar
  26. Eloranta, A. P., J. Sánchez-Hernández, P.-A. Amundsen, S. Skoglund, J. M. Brush, E. H. Henriksen & M. Power, 2016b. Water level regulation affects niche use of a lake top predator, Arctic charr (Salvelinus alpinus). Ecohydrology. doi: 10.1002/eco.1766.Google Scholar
  27. Emery, K. A., G. M. Wilkinson, F. G. Ballard & M. L. Pace, 2015. Use of allochthonous resources by zooplankton in reservoirs. Hydrobiologia 758: 257–269.CrossRefGoogle Scholar
  28. Enge, E. & F. Kroglund, 2011. Population density of brown trout (Salmo trutta) in extremely dilute water qualities in mountain lakes in southwestern Norway. Water, Air, & Soil Pollution 219: 489–499.CrossRefGoogle Scholar
  29. Evtimova, V. & I. Donohue, 2014. Quantifying ecological responses to amplified water level fluctuations in standing waters: an experimental approach. Journal of Applied Ecology 51: 1282–1291.CrossRefGoogle Scholar
  30. Evtimova, V. V. & I. Donohue, 2016. Water-level fluctuations regulate the structure and functioning of natural lakes. Freshwater Biology 61: 251–264.CrossRefGoogle Scholar
  31. Finstad, A. G., I. P. Helland, O. Ugedal, T. Hesthagen & D. O. Hessen, 2014. Unimodal response of fish yield to dissolved organic carbon. Ecology Letters 17: 36–43.CrossRefPubMedGoogle Scholar
  32. Forseth, T. & A. Harby (eds), 2014. Handbook for Environmental Design in Regulated Salmon Rivers. NINA Special Report 53.Google Scholar
  33. French, K. J., M. R. Anderson, D. A. Scruton & L. J. Ledrew, 1998. Fish mercury levels in relation to characteristics of hydroelectric reservoirs in Newfoundland, Canada. Biogeochemistry 40: 217–233.CrossRefGoogle Scholar
  34. Furey, P. C., R. N. Nordin & A. Mazumder, 2006. Littoral benthic macroinvertebrates under contrasting drawdown in a reservoir and a natural lake. Journal of the North American Benthological Society 25: 19–31.CrossRefGoogle Scholar
  35. Gaboury, M. N. & J. W. Patalas, 1984. Influence of water level drawdown on the fish populations of Cross Lake, Manitoba. Canadian Journal of Fisheries and Aquatic Sciences 41: 118–125.CrossRefGoogle Scholar
  36. Gal, G., M. Skerjanec & N. Atanasova, 2013. Fluctuations in water level and the dynamics of zooplankton: a data-driven modelling approach. Freshwater Biology 58: 800–816.CrossRefGoogle Scholar
  37. García Molinos, J., M. Viana, M. Brennan & I. Donohue, 2015. Importance of long-term cycles for predicting water level dynamics in natural lakes. PLoS ONE 10: e0119253.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gebre, S., T. Boissy & K. Alfredsen, 2014. Sensitivity to climate change of the thermal structure and ice cover regime of three hydropower reservoirs. Journal of Hydrology 510: 208–227.CrossRefGoogle Scholar
  39. Gertzen, E. L., S. E. Doka, C. K. Minns, J. E. Moore & C. Bakelaar, 2012. Effects of water levels and water level regulation on the supply of suitable spawning habitat for eight fish guilds in the Bay of Quinte, Lake Ontario. Aquatic Ecosystem Health & Management 15: 397–409.Google Scholar
  40. Gregersen, F., P. Aass, L. A. Vollestad & J. H. L’Abee-Lund, 2006. Long-term variation in diet of Arctic char, Salvelinus alpinus, and brown trout, Salmo trutta: effects of changes in fish density and food availability. Fisheries Management and Ecology 13: 243–250.CrossRefGoogle Scholar
  41. Grimås, U., 1964. Studies of the bottom fauna of impounded lakes in southern Norway. Institute of Freshwater Research Drottningholm Report 45: 94–104.Google Scholar
  42. Grimås, U., 1965. The short-term effect of artificial water-level fluctuations upon the littoral fauna of Lake Kultsjön, northern Sweden. Institute of Freshwater Research Drottningholm Report 46: 5–21.Google Scholar
  43. Hampton, S. E., S. C. Fradkin, P. R. Leavitt & E. E. Rosenberger, 2011. Disproportionate importance of nearshore habitat for the food web of a deep oligotrophic lake. Marine and Freshwater Research 62: 350–358.CrossRefGoogle Scholar
  44. Helland, I. P., A. G. Finstad, T. Forseth, T. Hesthagen & O. Ugedal, 2011. Ice-cover effects on competitive interactions between two fish species. Journal of Animal Ecology 80: 539–547.CrossRefPubMedGoogle Scholar
  45. Hellsten, S. K., 1998. Environmental factors related to water level regulation – a comparative study in northern Finland. Boreal Environmental Research 2: 345–367.Google Scholar
  46. Hellsten, S. & J. Riihimäki, 1996. Effects of lake water level regulation on the dynamics of aquatic macrophytes in northern Finland. Hydrobiologia 340: 85–92.CrossRefGoogle Scholar
  47. Hellsten, S., M. Marttunen, R. Palomäki, J. Riihimäki & E. Alasaarela, 1996. Towards an ecologically based regulation practice in Finnish hydroelectric lakes. Regulated Rivers: Research & Management 12: 535–545.CrossRefGoogle Scholar
  48. Heman, M. L., R. S. Campbell & L. C. Redmond, 1969. Manipulation of fish populations through reservoir drawdown. Transactions of the American Fisheries Society 98: 293304.Google Scholar
  49. Hirsch, P. E., S. Schillinger, H. Weigt & P. Burkhardt-Holm, 2014. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower. PLoS ONE 9: e114889.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hirsch, P. E., M. Schillinger, K. Apolloni, P. Burkhardt-Holm & H. Weigt, 2016. Integrating economic and ecological benchmarking for a sustainable development of hydropower. Sustainability 8: 875.CrossRefGoogle Scholar
  51. Holmlund, C. M. & M. Hammer, 1999. Ecosystem services generated by fish populations. Ecological Economics 29: 253–268.CrossRefGoogle Scholar
  52. IEA, 2016. Key World Energy Statistics. International Energy Agency, Paris, France.Google Scholar
  53. Jager, H. I. & B. T. Smith, 2008. Sustainable reservoir operation: can we generate hydropower and preserve ecosystem values? River Research and Applications 24: 340–352.CrossRefGoogle Scholar
  54. James, G. D. & E. Graynoth, 2002. Influence of fluctuating lake levels and water clarity on trout populations in littoral zones of New Zealand alpine lakes. New Zealand Journal of Marine and Freshwater Research 36: 39–52.CrossRefGoogle Scholar
  55. Kahl, U., S. Huelsmann, R. J. Radke & J. Benndorf, 2008. The impact of water level fluctuations on the year class strength of roach: implications for fish stock management. Limnologica 38: 258–268.CrossRefGoogle Scholar
  56. Karlsson, J. & P. Byström, 2005. Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnology and Oceanography 50: 538–543.CrossRefGoogle Scholar
  57. Karlsson, J., P. Byström, J. Ask, P. Ask, L. Persson & M. Jansson, 2009. Light limitation of nutrient-poor lake ecosystems. Nature 460: 506–509.CrossRefPubMedGoogle Scholar
  58. Kelly, B., K. Smokorowski & M. Power, 2017. Growth, condition and survival of three forage fish species exposed to two different experimental hydropeaking regimes in a regulated river. River Research and Applications 3: 50–62.Google Scholar
  59. Kolding, J. & P. A. M. van Zwieten, 2011. Relative lake level fluctuations and their influence on productivity and resilience in tropical lakes and reservoirs. Fisheries Research 115–116: 99–109.Google Scholar
  60. Kumar, A., T. Schei, A. Ahenkorah, R. Caceres Rodriguez, J.-M. Devernay, M. Freitas, D. Hall, Å. Killingtveit & Z. Liu, 2011. Hydropower. In Edenhofer, O., R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer & C. von Stechow C (eds), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge and New York: 437–496.Google Scholar
  61. Layman, C. A., M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post & S. Bearhop, 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 87: 545–562.CrossRefPubMedGoogle Scholar
  62. Lindström, T., 1973. Life in a lake reservoir: fewer options, decreased production. Ambio 2: 145–153.Google Scholar
  63. Linløkken, A. N. & O. T. Sandlund, 2016. Recruitment of sympatric vendace (Coregonus albula) and whitefish (C. lavaretus) is affected by different environmental factors. Ecology of Freshwater Fish 25: 652–663.CrossRefGoogle Scholar
  64. Marttunen, M., S. Hellsten, B. Glover, A. Tarvainen, L. Klintwall, H. Olsson & T. S. Pedersen, 2006. Heavily regulated lakes and the european water framework directive – comparisons from Finland, Norway, Sweden, Scotland and Austria. European Water Association 5: 1–22.Google Scholar
  65. McEwen, D. C. & M. G. Butler, 2010. The effects of water-level manipulation on the benthic invertebrates of a managed reservoir. Freshwater Biology 55: 1086–1101.CrossRefGoogle Scholar
  66. McMeans, B. C., K. S. McCann, T. D. Tunney, A. T. Fish, A. M. Muir, N. Lester, B. Shuter & N. Rooney, 2016. The adaptive capacity of lake food webs: from individuals to ecosystems. Ecological Monographs 86: 4–19.CrossRefGoogle Scholar
  67. Middelburg, J. J., 2014. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11: 2357–2371.CrossRefGoogle Scholar
  68. Milbrink, G., T. Vrede, L. J. Tranvik & E. Rydin, 2011. Large-scale and long-term decrease in fish growth following the construction of hydroelectric reservoirs. Canadian Journal of Fisheries and Aquatic Sciences 68: 2167–2173.CrossRefGoogle Scholar
  69. Miranda, L. E. & D. R. Lowery, 2007. Juvenile densities relative to water regime in main-stem reservoirs of the Tennessee River, U.S.A. Lakes and Reservoirs: Research and Management 12: 87–96.CrossRefGoogle Scholar
  70. Miranda, L. E., W. L. Shelton & T. D. Bryce, 1984. Effects of water level manipulation on abundance, mortality, and growth of young-of-year largemouth bass in West Point Reservoir, Alabama-Georgia. North American Journal of Fisheries Management 4: 314–320.CrossRefGoogle Scholar
  71. Mjelde, M., S. Hellsten & F. Ecke, 2013. A water level drawdown index for aquatic macrophytes in Nordic lakes. Hydrobiologia 704: 141–151.CrossRefGoogle Scholar
  72. Modde, T., J. R. Jeric, W. A. Hubert & R. D. Gipson, 1997. Estimating the impacts of reservoir elevation changes on kokanee emergence in Flaming Gorge Reservoir, Wyoming-Utah. North American Journal of Fisheries Management 17: 470–473.CrossRefGoogle Scholar
  73. Nieminen, E., K. Hyytiäinen & M. Lindroos, 2016. Economic and policy considerations regarding hydropower and migratory fish. Fish and Fisheries. doi: 10.1111/faf.12167.Google Scholar
  74. Nilsson, N. A., 1961. The effect of water-level fluctuations on the feeding habits of trout and char in the Lakes Blåsjönand Jormsjön, North Sweden. Institute of Freshwater Research Drottningholm Report 42: 238–261.Google Scholar
  75. Palomäki, R. & E. Koskeniemi, 1993. Effects of bottom freezing on macrozoobenthos in the regulated Lake Pyhajarvi. Archiv für Hydrobilogie 123: 73–90.Google Scholar
  76. Potter, D. U., M. P. Stevens & J. L. Meyer, 1982. Changes in physical and chemical variables in a new reservoir due to pumped-storage operations. Water Resources Bulletin 18: 627–633.CrossRefGoogle Scholar
  77. Rosseland, L., 1964. Probable damage to fishery as a result of the Røldal-Suldal hydropower development. Fiskeforskningen Technical Report.Google Scholar
  78. Rowe, D., E. Graynoth, G. James, M. Taylor & L. Hawke, 2003. Influence of turbidity and fluctuating water levels on the abundance and depth distribution of small, benthic fish in New Zealand alpine lakes. Ecology of Freshwater Fish 12: 216–227.CrossRefGoogle Scholar
  79. Rydin, E., T. Vrede, J. Persson, S. Holmgren, M. Jansson, L. Tranvik & G. Milbrink, 2008. Compensatory nutrient enrichment in an oligotrophicated mountain reservoir – effects and fate of added nutrients. Aquatic Sciences 70: 323–336.CrossRefGoogle Scholar
  80. Saksgård, R. & T. Hesthagen, 2004. A 14-year study of habitat use and diet of brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) in Lake Atnsjoen, a subalpine Norwegian lake. Hydrobiologia 521: 187–199.CrossRefGoogle Scholar
  81. Simoes, N. R., A. H. Nunes, J. D. Dias, F. A. Lansac-Toha, L. F. M. Velho & C. C. Bonecker, 2015. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758: 3–17.CrossRefGoogle Scholar
  82. Smith, B. D., P. S. Maitland & S. M. Pennock, 1987. A comparative study of water level regimes and littoral benthic communities in Scottish lochs. Biological Conservation 39: 291–316.CrossRefGoogle Scholar
  83. Smith, A., K. Smokorowski, J. Marty & M. Power, 2016. Stable isotope characterization of Rainy River, Ontario, lake sturgeon diet and trophic position. Journal of Great Lakes Research 42: 440–447.CrossRefGoogle Scholar
  84. Solvang, E., J. Charmasson, J. Sauterleute, A. Harby, Å. Killingtveit, H. Egeland, O. Andersen, A. Ruud & Ø. Aas, 2014. Norwegian hydropower for large-scale electricity balancing needs. SINTEF Energy Research, Report No. TR A7227.Google Scholar
  85. Spitale, D., N. Angeli, V. Lencioni, M. Tolotti & M. Cantonati, 2016. Comparison between natural and impacted Alpine lakes six years after hydropower exploitation has ceased. Biologia 70: 1597–1605.Google Scholar
  86. Sutela, T. & T. Vehanen, 2008. Effects of water-level regulation on the nearshore fish community in boreal lakes. Hydrobiologia 613: 13–20.CrossRefGoogle Scholar
  87. Sutela, T., A. Mutenia & E. Salonen, 2002. Relationship between annual variation in reservoir conditions and year-class strength of peled (Coregonus peled) and whitefish (C. lavaretus). Hydrobiologia 485: 213–221.CrossRefGoogle Scholar
  88. Thompson, R. M. & G. R. Ryder, 2008. Effects of hydro-electrically induced water level fluctuations on benthic communities in Lake Hawea, New Zealand. New Zealand Journal of Marine and Freshwater Research 42: 197–206.CrossRefGoogle Scholar
  89. Tunney, T. D., K. S. McCann, N. P. Lester & B. J. Shuter, 2014. Effects of differential habitat warming on complex communities. Proceedings of the National Academy of Sciences of the United States of America 111: 8077–8082.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.CrossRefGoogle Scholar
  91. Vadeboncoeur, Y. G., M. J. Peterson, Vander. Zanden & J. Kalff, 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89: 2541–2552.CrossRefGoogle Scholar
  92. Valdovinos, C., C. Moya, V. Olmos, O. Parra, B. Karrasch & O. Buettner, 2007. The importance of water-level fluctuation for the conservation of shallow water benthic macroinvertebrates: an example in the Andean zone of Chile. Biodiversity and Conservation 16: 3095–3109.CrossRefGoogle Scholar
  93. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, London.Google Scholar
  94. White, M. S., M. A. Xenopoulos, R. A. Metcalfe & K. M. Somers, 2011. Water level thresholds of benthic macroinvertebrate richness, structure, and function of boreal lake stony littoral habitats. Canadian Journal of Fisheries and Aquatic Sciences 68: 1695–1704.CrossRefGoogle Scholar
  95. Winfield, I. J., J. M. Fletcher & J. B. James, 2004. Modelling the impacts of water level fluctuations on the population dynamics of whitefish (Coregonus lavaretus (L.)) in Haweswater, UK. Ecohydrology & Hydrobiology 4: 409–416.Google Scholar
  96. Zohary, T. & I. Ostrovsky, 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1: 47–59.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Philipp E. Hirsch
    • 1
  • Antti P. Eloranta
    • 2
  • Per-Arne Amundsen
    • 3
  • Åge Brabrand
    • 4
  • Julie Charmasson
    • 5
  • Ingeborg P. Helland
    • 2
  • Michael Power
    • 6
  • Javier Sánchez-Hernández
    • 7
  • Odd Terje Sandlund
    • 2
  • Julian F. Sauterleute
    • 8
  • Sigrid Skoglund
    • 2
  • Ola Ugedal
    • 2
  • Hong Yang
    • 9
    • 10
    • 11
  1. 1.Research Centre for Sustainable Energy and Water SupplyUniversity of BaselBaselSwitzerland
  2. 2.Norwegian Institute for Nature Research (NINA)TrondheimNorway
  3. 3.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  4. 4.Natural History MuseumUniversity of OsloOsloNorway
  5. 5.SINTEF Energy ResearchTrondheimNorway
  6. 6.Department of BiologyUniversity of WaterlooWaterlooCanada
  7. 7.Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de BioloxíaUniversidade de Santiago de CompostelaSantiago de CompostelaEspaña
  8. 8.Sweco NorwayTrondheimNorway
  9. 9.Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
  10. 10.Norwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
  11. 11.State Key Laboratory of Water Resources and Hydropower Engineering SciencesWuhan UniversityWuhanChina

Personalised recommendations