Advertisement

Hydrobiologia

, Volume 794, Issue 1, pp 273–285 | Cite as

Chironomidae of the Holarctic region: a comparison of ecological and functional traits between North America and Europe

  • Sónia R. Q. Serra
  • Manuel A. S. Graça
  • Sylvain Dolédec
  • Maria João Feio
Primary Research Paper

Abstract

Chironomidae (Diptera) are widespread, abundant, diverse and ubiquitous, and include genera and species that are distributed across the Holarctic region. However, the geographical barriers between continents should have resulted in intraspecific population differentiation with reflection on individual biological and ecological traits. Our aim was to test for potential differences in Chironomidae species/genus and traits between the Nearctic and Palearctic regions. We compared the Chironomidae trait information gathered in two databases; one database was developed in Europe and the other in North America. Common genera and species of both databases were selected, and the common traits were adjusted into the same trait categories. Data were transformed into presence/absence and divided into Eltonian (biological/functional) and Grinnellian (ecological) traits. Common genera and common species were analyzed using Fuzzy correspondence analysis (FCA). Differences between databases occur for all trait domains. Yet, Eltonian traits showed lower level of concordance than Grinnellian traits at the species level. Different biological characteristics in the Nearctic and Palearctic regions may indicate that Chironomidae have different adaptions to similar ecological environments due to intraspecific variability or even trait plasticity.

Keywords

Diptera Eltonian traits Grinnellian traits Palearctic Nearctic Regional traits 

Notes

Acknowledgements

This study was possible through the strategic project UID/MAR/04292/2013 granted to MARE, also through a PhD scholarship (SFRH/BD/80188/2011); both funded by the Portuguese Foundation for Science and Technology (FCT). The research benefited from the cotutelage between the University of Coimbra and the University of Lyon 1, and the cooperation between the MARE, University of Coimbra, Portugal, and the LEHNA – Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, University of Lyon, France.

Supplementary material

10750_2017_3102_MOESM1_ESM.docx (63 kb)
Supplementary material 1 (DOCX 62 kb)

References

  1. Albert, C. H., F. de Bello, I. Boulangeat, G. Pellet, S. Lavorel & W. Thuiller, 2012. On the importance of intraspecific variability for the quantification of functional diversity. Oikos 121: 116–126.CrossRefGoogle Scholar
  2. Andersen, T., P. S. Cranston & J. H. Epler (eds), 2013. Chironomidae of the Holartic Region. Keys and diagnoses, Larvae. Insect Systematics and Evolution Supplement 66. Lund, Sweden.Google Scholar
  3. Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), 1995. The Chironomidae. The Biology and Ecology of Non-biting Midges. Chapman & Hall, London.Google Scholar
  4. Ashe, P., D. A. Murray & F. Reiss, 1987. The zoogeographical distribution of Chironomidae (Insecta: Diptera). Annales de Limnologie 23: 27–60.CrossRefGoogle Scholar
  5. Baird, D. J., C. J. O. Baker, R. B. Brua, M. Hajibabaei, K. McNicol, T. J. Pascoe & D. de Zwart, 2011. Toward a knowledge infrastructure for traits-based ecological risk assessment. Integrated Environmental Assessment and Management 7: 209–215.CrossRefPubMedGoogle Scholar
  6. Bêche, L. A. & B. Statzner, 2009. Richness gradients of stream invertebrates across the USA: Taxonomy- and trait-based approaches. Biodiversity and Conservation 18: 3909–3930.CrossRefGoogle Scholar
  7. Beck Jr., W. M., 1977. Environmental Requirements and Pollution Tolerance of Common Freshwater Chironomidae, Report EPA-600/4-77-024. USEPA, Washington, DC.Google Scholar
  8. Bertrand, J. A. M., B. Delahaie, Y. X. C. Bourgeois, T. Duval, R. García-Jiménez, J. Cornuault, B. Pujol, C. Thébaud & B. Milá, 2016. The role of selection and historical factors in driving population differentiation along an elevational gradient in an island bird. Journal of Evolutionary Biology 29: 824–836.CrossRefPubMedGoogle Scholar
  9. Bolnick, D., P. Amarasekare, M. S. Araújo, R. Bürger, J. M. Levine, M. Novak, V. H. W. Rudolf, S. J. Schreiber, M. C. Urban & D. A. Vasseur, 2011. Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution 26: 183–192.CrossRefGoogle Scholar
  10. Butler, M. G., I. I. Kiknadze, V. V. Golygina, J. Martin, A. G. Istomina, W. F. Wülker, J. E. Sublette & M. F. Sublette, 1999. Cytogenetic differentiation between Palearctic and Nearctic populations of Chironomus plumosus L. (Diptera, Chironomidae). Genome 42: 797–815.CrossRefGoogle Scholar
  11. Carmona, C. P., F. de Bello, N. W. H. Mason & J. Lepš, 2016. Traits without borders: Integrating functional diversity across scales. Trends in Ecology & Evolution 31: 382–394.CrossRefGoogle Scholar
  12. Chessel, D., A. B. Dufour & J. Thioulouse, 2004. The ade4 package – I: One-table methods. R News 4: 5–10.Google Scholar
  13. Chevenet, F., S. Dolédec & D. Chessel, 1994. A Fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.CrossRefGoogle Scholar
  14. Cranston, P. S., 1995. Introduction. In Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae. The Biology and Ecology of Non-biting Midges. Chapman & Hall, London: 1–7.Google Scholar
  15. Cranston, P. S. & D. R. Oliver, 1987. Problems in Holarctic chironomid biogeography. Entomologica Scandinavica Supplement 29: 51–56.Google Scholar
  16. Culp, J. M., D. G. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff, A. I. Pollard, A. G. Yates & G. C. Hose, 2010. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7: 187–197.CrossRefPubMedGoogle Scholar
  17. Delettre, Y. R., 1988. Chironomid wing length, dispersal ability and habitat predictabitity. Ecography 11: 166–170.CrossRefGoogle Scholar
  18. Dolédec, S. & D. Chessel, 1987. Rythmes saisonniers et composantes stationnelles en milieu aquatique. I. – Description d’un plan d’observation complet par projection de variables. Acta Oecologica Oecologia Generalis 8: 403–426.Google Scholar
  19. Dolédec, S. & B. Statzner, 2008. Invertebrate traits for the biomonitoring of large European rivers: An assessment of specific types of human impact. Freshwater Biology 53: 617–634.CrossRefGoogle Scholar
  20. Dray, S. & A. B. Dufour, 2007. The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.CrossRefGoogle Scholar
  21. Dray, S., A. B. Dufour & D. Chessel, 2007. The ade4 package – II: two-table and K-table methods. R News 7: 47–52.Google Scholar
  22. Drotz, M. K., T. Brodin & A. N. Nilsson, 2015. Changing names with changed address: Integrated taxonomy and species delimitation in the Holarctic colymbetes paykulli group (Coleoptera: Dytiscidae). PLoS ONE 10: e0143577.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Feio, M. J., S. Dolédec & M. A. S. Graça, 2015. Human disturbance affects the long-term spatial synchrony of freshwater invertebrate communities. Environmental Pollution 196: 300–308.CrossRefPubMedGoogle Scholar
  24. Ferrington Jr., L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 447–455.CrossRefGoogle Scholar
  25. Gayraud, S., B. Statzner, P. Bady, A. Haybachp, F. Schöll, P. Usseglio-Polatera & M. Bacchi, 2003. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of alternative metrics. Freshwater Biology 48: 2045–2064.CrossRefGoogle Scholar
  26. Griffiths, H. M., J. Louzada, R. D. Bardgett & J. Barlow, 2016. Assessing the importance of intraspecific variability in dung beetle functional traits. PLoS ONE 11: e0145598.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gunderina, L. I., I. I. Kiknadze, A. G. Istomina & M. Butler, 2009. Geographic differentiation of genomic DNA of Chironomus plumosus (Diptera, Chironomidae) in natural holarctic populations. Russian Journal of Genetics 45: 54–62.CrossRefGoogle Scholar
  28. Guryev, V. P. & A. G. Blinov, 2002. Phylogenetic relationships among holarctic populations of Chironomus entis and Chironomus plumosus in view of possible horizontal transfer of mitochondrial genes. Russian Journal of Genetics 38: 239–243.CrossRefGoogle Scholar
  29. Hochkirch, A., J. Deppermann & J. Gröninga, 2008. Phenotypic plasticity in insects: The effects of substrate color on the coloration of two ground-hopper species. Evolution & Development 10: 350–359.CrossRefGoogle Scholar
  30. Kavar, T., P. Pavlovčič, S. Sušnik, V. Meglič & M. Virant-Doberlet, 2006. Genetic differentiation of geographically separated populations of the southern green stink bug Nezara viridula (Hemiptera: Pentatomidae). Bulletin of Entomological Research 96: 117–128.CrossRefPubMedGoogle Scholar
  31. Kiknadze, I. I., M. G. Butler, K. G. Aimanova, L. I. Gunderina & J. K. Cooper, 1996. Geographic variation in the polytene chromosome banding pattern of the Holarctic midge Chironomus (Camptochironomus) tentans (Fabricius). Canadian Journal of Zoology 74: 171–191.CrossRefGoogle Scholar
  32. Lecocq, T., S. Dellicour, D. Michez, P. Lhomme, M. Vanderplanck, I. Valterová, J.-Y. Rasplus & P. Rasmont, 2013. Scent of a break-up: Phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC Evolutionary Biology 13: 263.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lindeberg, B., 1980. Taxonomic problems in Holarctic Chironomidae (Diptera). In Murray, D. A. (ed.), Chironomidae. Ecology, Systematics, Cytology and Physiology, 1st ed. Pergamon Press, Oxford: 93–96.Google Scholar
  34. Luo, Y., A. Widmer & S. Karrenberg, 2015. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana. Heredity 114: 220–228.CrossRefPubMedGoogle Scholar
  35. Martin, J., V. Guryev & A. Blinov, 2002. Population variability in Chironomus (Camptochironomus) species (Diptera, Nematocera) with a Holarctic distribution: Evidence of mitochondrial gene flow. Insect Molecular Biology 11: 387–397.CrossRefPubMedGoogle Scholar
  36. Marziali, L., D. G. Armanini, M. Cazzola, S. Erba, E. Toppi, A. Buffagni & B. Rossaro, 2010. Responses of chironomid larvae (Insecta Diptera) to ecological quality in mediterranean river mesohabitats (South Italy). River Research and Applications 26: 1036–1105.Google Scholar
  37. McLachlan, A., 1985. The relationship between habitat predictability and wing length in midges (Chironomidae). Oikos 44: 391–397.CrossRefGoogle Scholar
  38. McLachlan, A. J. & M. A. Cantrell, 1976. Sediment development and its influence on the distribution and tube structure of Chironomus plumosus L. (Chironomidae, Diptera) in a new impoundment. Freshwater Biology 6: 437–443.CrossRefGoogle Scholar
  39. Moczek, A. P., 2010. Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 593–603.CrossRefGoogle Scholar
  40. Moller Pillot, H. K. M., 2009. Chironomidae Larvae. Biology and Ecology of the Chironomini. KNNV Publishing, Zeist.Google Scholar
  41. Nijhout, H. F., 2003. Development and evolution of adaptive polyphenisms. Evolution & Development 5: 9–18.CrossRefGoogle Scholar
  42. Oliver, D. R. & M. E. Roussel, 1983. The Genera of Larval Midges of Canada: Diptera, Chironomidae, Insects and Arachnids of Canada Handbook Series, Part 11. Canadian Government Publishing Centre, Ottawa.Google Scholar
  43. Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: Back to basics and looking forward. Ecology Letters 9: 741–758.CrossRefPubMedGoogle Scholar
  44. Pinder, L. C. V., 1983. The larvae of Chironomidae (Diptera) of the Holarctic region. Introduction. In Wiederholm, T. (ed), Chironomidae of the Holarctic Region. Keys and Diagnoses, Part I, Larvae, Supplement 19. Entomologica Scandinavica, Östergötland, Motala: 7–10.Google Scholar
  45. R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria [available on internet at https://www.R-project.org].
  46. Resh, V. H., A. G. Hildrew, B. Statzner & C. R. Townsend, 1994. Theoretical habitat templets, species traits, and species richness: A synthesis of long-term ecological research on the Upper Rhône River in the context of concurrently developed ecological theory. Freshwater Biology 31: 539–554.CrossRefGoogle Scholar
  47. Richoux, P., 1994. Theoretical habitat templets, species traits, and species richness: aquatic Coleoptera in the Upper Rhône River and its floodplain. Freshwater Biology 31: 377–395.CrossRefGoogle Scholar
  48. Roskosch, A., N. Hette, M. Hupfer & J. Lewandowski, 2012. Alteration of Chironomus plumosus ventilation activity and bioirrigation-mediated benthic fluxes by changes in temperature, oxygen concentration, and seasonal variations. Freshwater Science 31: 269–281.CrossRefGoogle Scholar
  49. Saether, O. A. & M. Spies, 2013. Fauna Europaea: Chironomidae. In: Beuk, P. & T. Pape (eds), Fauna Europaea: Diptera. Fauna Europaea Version 2.6.2 [available on internet at http://www.faunaeur.org/]. Accessed 1 August of 2016.
  50. Schmera, D., J. Podani, J. Heino, T. Erős & N. L. Poff, 2015. A proposed unified terminology of species traits in stream ecology. Freshwater Science 34: 823–830.CrossRefGoogle Scholar
  51. Schmidt-Kloiber, A., & D. Hering, 2015. www.freshwaterecology.info – An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators 53: 271–282.CrossRefGoogle Scholar
  52. Serra, S. R. Q., F. Cobo, M. A. S. Graça, S. Dolédec & M. J. Feio, 2016. Synthesising the trait information of European Chironomidae (Insecta: Diptera): Toward a new database. Ecological indicators 61: 282–292.CrossRefGoogle Scholar
  53. Snell-Rood, E., R. Cothran, A. Espeset, P. Jeyasingh, S. Hobbie & N. I. Morehouse, 2015. Life-history evolution in the anthropocene: Effects of increasing nutrients on traits and trade-offs. Evolutionary Applications 8: 635–649.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Statzner, B. & L. A. Bêche, 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80–119.CrossRefGoogle Scholar
  55. Statzner, B., V. H. Resh & A. L. Roux, 1994. The synthesis of long-term ecological research in the context of concurrently developed ecological theory: Design of a research strategy for the Upper Rhône River and its floodplain. Freshwater Biology 31: 253–263.CrossRefGoogle Scholar
  56. Statzner, B., B. Bis, S. Dolédec & P. Usseglio-Polatera, 2001. Perspectives for biomonitoring at large spatial scales: A unified measure for the functional composition of invertebrate communities in European running waters. Basic and Applied Ecology 2: 73–85.CrossRefGoogle Scholar
  57. Statzner, B., S. Dolédec & B. Hugueny, 2004. Biological trait composition of European stream invertebrate communities: Assessing the effects of various trait filter types. Ecography 27: 470–488.CrossRefGoogle Scholar
  58. Stoks, R., J. L. Nystrom, M. L. May & M. A. McPeek, 2005. Parallel evolution in ecological and reproductive trait to produce cryptic damselfly species across the Holarctic. Evolution 59: 1976–1988.CrossRefPubMedGoogle Scholar
  59. Tachet, H., P. Usseglio-Polatera & C. Roux, 1994. Theoretical habitat templets, species traits, and species richness: Trichoptera in the Upper Rhône River and its floodplain. Freshwater Biology 31: 397–415.CrossRefGoogle Scholar
  60. Ter Braak, C. F. J., 1988. Partial Canonical Correspondence Analysis. In Bock, H. H. (ed.), Classification and Related Methods of Data Analysis. North-Holland, Amsterdam: 551–558.Google Scholar
  61. Thioulouse, J., D. Chessel, S. Dolédec & J. M. Olivier, 1997. ADE-4: A multivariate analysis and graphical display software. Statistics and Computing 7: 75–83.CrossRefGoogle Scholar
  62. Tokeshi, M., 1995. Species Interactions and Community Structure. In Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae. The biology and ecology of non-biting midges. Chapman & Hall, London: 297–335.Google Scholar
  63. USEPA, 2012. Freshwater Biological Traits Database (EPA/600/R-11/038F). Environmental Protection Agency, Washington, DC.Google Scholar
  64. Usseglio-Polatera, P. & H. Tachet, 1994. Theoretical habitat templets, species traits, and species richness: Plecoptera and Ephemeroptera in the Upper Rhône River and its floodplain. Freshwater Biology 31: 357–375.CrossRefGoogle Scholar
  65. Usseglio-Polatera, P., 1994. Theoretical habitat templets, species traits, and species richness: Aquatic insects in the Upper Rhône River and its floodplain. Freshwater Biology 31: 417–437.CrossRefGoogle Scholar
  66. Vallenduuk, H. J. & H. K. M. Moller Pillot, 2007. Chironomidae larvae – general ecology and Tanipodinae. KNNV Publishing, Zeist.Google Scholar
  67. Van Kleef, H., W. C. E. P. Verberk, F. F. P. Kimenai, G. Van der Velde & R. S. E. W. Leuven, 2015. Natural recovery and restoration of acidified shallow soft-water lakes: Successes and bottlenecks revealed by assessing life-history strategies of chironomid larvae. Basic and Applied Ecology 16: 325–334.CrossRefGoogle Scholar
  68. Vieira, N. K. M., N. L. Poff, D. M. Carlisle, S. R. Moulton II, M. L. Koski & B. C. Kondratieff, 2006. A Database of Lotic Invertebrate Traits for North America. U.S. Geological Survey Data Series 187: 1–19 [available on internet at http://pubs.usgs.gov/ds/ds187/]. Accessed at 1 August 2016.
  69. Violle, C., B. J. Enquist, B. J. McGill, L. Jiang, C. H. Albert, C. Hulshof, V. Jung & J. Messier, 2012. The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution 27: 244–252.CrossRefGoogle Scholar
  70. Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic Region. Keys and Diagnoses, Part I, Larvae. Entomologica Scandinavica Supplement 19. Östergötland, Motala, Sweden.Google Scholar
  71. Yuan, L. L., 2006. Estimation and Application of Macroinvertebrate Tolerance Values, Report EPA/600/P-04/116F. USEPA, Washington, DC.Google Scholar
  72. Zhou, Y.-B., C. Newman, W.-T. Xu, C. D. Buesching, A. Zalewski, Y. Kaneko, D. W. Macdonald & Z.-Q. Xie, 2011. Biogeographical variation in the diet of Holarctic martens (genus Martes, Mammalia: Carnivora: Mustelidae): Adaptive foraging in generalists. Journal of Biogeography 38: 137–147.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Sónia R. Q. Serra
    • 1
  • Manuel A. S. Graça
    • 1
  • Sylvain Dolédec
    • 2
  • Maria João Feio
    • 1
  1. 1.MARE – Marine and Environmental Sciences Centre, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.University Lyon 1, UMR 5023 LEHNA, Biodiversité et Plasticité dans les Hydrosystèmes, Bât ForelVilleurbanne CedexFrance

Personalised recommendations