, Volume 794, Issue 1, pp 257–271 | Cite as

Challenges using extrapolated family-level macroinvertebrate metrics in moderately disturbed tropical streams: a case-study from Belize

  • Rachael CarrieEmail author
  • Michael Dobson
  • Jos Barlow
Primary Research Paper


Family-level biotic metrics were originally designed to rapidly assess gross organic pollution effects, but came to be regarded as general measures of stream degradation. Improvements in water quality in developed countries have reignited debate about the limitations of family-level taxonomy to detect subtle change, and is resulting in a shift back towards generic and species-level analysis to assess smaller effects. Although the scale of pollution characterizing past condition of streams in developed countries persists in many developing regions, some areas are still considered to be only moderately disturbed. We sampled streams in Belize to investigate the ability of family-level macroinvertebrate metrics to detect change in stream catchments where less than 30% of forest had been cleared. Where disturbance did not co-vary with natural gradients of change, and in areas characterized by low intensity activities, none of the metrics tested detected significant change, despite evidence of environmental impacts. We highlight the need for further research to clarify the response of metrics to disturbance over a broader study area that allows replication for confounding sources of natural variation. We also recommend research to develop more detailed understanding of the taxonomy and ecology of Neotropical macroinvertebrates to improve the robustness of metric use.


Bio-assessment Taxonomic resolution Tropical data gaps 



This research was funded by the Natural Environmental Research Council-Economic Research Council grant ES/F013035/1, the Rufford Small Grants Foundation (Grant 11376-2), and the Freshwater Biological Association Hugh Cary Gilson Memorial Award for 2012, and made possible by the Ya’axché Conservation Trust, particularly Devina Bol, Anignazio Makin, Octavio Cal, Pastor Ayala and Abelino Zuniga who provided assistance in the field and laboratory. We also thank Nabor Moya for clarifying the fuzzy-coding technique, Patrick Keenan and Phil Haygarth for assistance with nutrient analysis, and John Murphy for comments on an earlier draft. We gratefully acknowledge the Belize Fisheries Department, Belize Forest Department and Belize Agricultural Health Authority for permitting the study and export of specimens and the Animal Health and Veterinary Laboratories Agency for permitting the import of specimens into the UK, and anonymous reviewers for their comments on earlier versions of this manuscript.

Compliance with ethical standards

Conflict of interest

None of the authors has conflict interests, financial or otherwise.

Supplementary material

10750_2017_3100_MOESM1_ESM.pdf (162 kb)
Supplementary material 1 (PDF 161 kb)
10750_2017_3100_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 20 kb)
10750_2017_3100_MOESM3_ESM.pdf (91 kb)
Supplementary material 3 (PDF 90 kb)
10750_2017_3100_MOESM4_ESM.pdf (92 kb)
Supplementary material 4 (PDF 92 kb)
10750_2017_3100_MOESM5_ESM.pdf (166 kb)
Supplementary material 5 (PDF 166 kb)
10750_2017_3100_MOESM6_ESM.pdf (158 kb)
Supplementary material 6 (PDF 158 kb)


  1. Alonso-EguíaLis, P., J. M. Mora, B. Campbell & M. Springer (eds), 2014. Diversidad, conservación y uso de los macroinvertebrados dulceacuícolas de México, Centroamérica, Colombia, Cuba y Puerto Rico. Instituto Mexicano de Tecnología del Agua, Jiutepec, México, 444 pp.Google Scholar
  2. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Ltd., Plymouth.Google Scholar
  3. AQEM Consortium, 2002. Manual for the application of the AQEM method. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0. Accessed 24th July 2013.
  4. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research 17: 333–347.CrossRefGoogle Scholar
  5. Benstead, J. P., M. M. Douglas & C. M. Pringle, 2003. Relationships of stream invertebrate communities to deforestation in eastern Madagascar. Ecological Applications 13: 1473–1490.CrossRefGoogle Scholar
  6. Bojsen, B. H. & D. Jacobsen, 2003. Effects of deforestation on macroinvertebrate diversity and assemblage structure in Ecuadorian Amazon streams. Archiv Fur Hydrobiologie 158: 317–342.CrossRefGoogle Scholar
  7. Boonsoong, B., N. Sangpradub & M. T. Barbour, 2009. Development of rapid bioassessment approaches using benthic macroinvertebrates for Thai streams. Environmental Monitoring and Assessment 155: 129–147.CrossRefPubMedGoogle Scholar
  8. Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.CrossRefGoogle Scholar
  9. Brown, B. V., A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley & M. A. Zumbado, 2009. Manual of Central American Diptera. Volume 1, vol 1. NRC Research Press, Ottawa.Google Scholar
  10. Buendia, C., C. N. Gibbins, D. Vericat, R. J. Batalla & A. Douglas, 2013. Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecological Indicators 25: 184–196.CrossRefGoogle Scholar
  11. Buss, D. F. & F. F. Salles, 2007. Using Baetidae species as biological indicators of environmental degradation in a Brazilian river basin. Environmental Monitoring and Assessment 130: 365–372.CrossRefPubMedGoogle Scholar
  12. Buss, D. F. & A. S. Vitorino, 2010. Rapid bioassessment protocols using benthic macroinvertebrates in Brazil: evaluation of taxonomic sufficiency. Journal of the North American Benthological Society 29: 562–571.CrossRefGoogle Scholar
  13. Capps, K. A., C. N. Bentsen & A. Ramírez, 2016. Poverty, urbanization, and environmental degradation: urban streams in the developing world. Freshwater Science 35: 429–435.CrossRefGoogle Scholar
  14. Carrie, R. H. & E. Kay, 2014. Belize. In Alonso-EguíaLis, P., J. M. Mora, B. Campbell & M. Springer (eds), Diversidad, conservación y uso de los macroinvertebrados dulceacuícolas de México, Centroamérica, Colombia, Cuba y Puerto Rico. Instituto Mexicano de Tecnología del Agua, Jiutepec: 33–62.Google Scholar
  15. Carrie, R. H., M. Dobson & J. Barlow, 2015. Effects of geology and season on macroinvertebrates in lowland Belizean streams: implications for tropical bio-assessment. Freshwater Sciences 4: 648–662.CrossRefGoogle Scholar
  16. Castillo, L. E., E. Martinez, C. Ruepert, C. Savage, M. Gilek, M. Pinnock & E. Solis, 2006. Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, Limon, Costa Rica. Science of the Total Environment 367: 418–432.CrossRefPubMedGoogle Scholar
  17. Chang, F., J. E. Lawrence, B. Rios-Touma & V. H. Resh, 2014. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environmental monitoring and assessment 186: 2135–2149.CrossRefPubMedGoogle Scholar
  18. Cherrington, E. A., E. Ek, P. Cho, B. F. Howell, B. E. Hernandez, E. R. Anderson, A. I. Flores, B. C. Garcia, A. Sempris & D. E. Irwin, 2010. Forest Cover and Deforestation in Belize: 1980–2010. Water Center for the Humid Tropics of Latin America and the Caribbean (Cathalac), Panama, Panama City.Google Scholar
  19. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd, Plymouth.Google Scholar
  20. Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. Plymouth Marine Laboratory, Plymouth.Google Scholar
  21. Cohen, B., 2006. Urbanization in developing countries: current trends, future projections, and key challenges for sustainability. Technology in Society 28: 63–80.CrossRefGoogle Scholar
  22. Connolly, N. M., M. R. Crossland & R. G. Pearson, 2004. Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. Journal of the North American Benthological Society 23: 251–270.CrossRefGoogle Scholar
  23. Development Core Team, R., 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  24. Dickens, C. W. S. & P. M. Graham, 2002. The South African Scoring System (SASS) version 5 rapid bioassessment method for rivers. African Journal of Aquatic Science 27: 1–10.CrossRefGoogle Scholar
  25. Dobson, M., A. Magana, J. M. Mathooko & F. K. Ndegwa, 2002. Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biology 47: 909–919.CrossRefGoogle Scholar
  26. Dolédec, S., J. Olivier & B. Statzner, 2000. Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: effects of taxonomic and spatial resolution. Archiv Fur Hydrobiologie 148: 25–43.CrossRefGoogle Scholar
  27. Dudgeon, D., 2012. Responses of benthic macroinvertebrate communities to altitude and geology in tributaries of the Sepik River (Papua New Guinea): the influence of taxonomic resolution on the detection of environmental gradients. Freshwater Biology 57: 1794–1812.CrossRefGoogle Scholar
  28. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  29. Esselman, P. C., 2001. An Ecological Baseline Study of Physical Habitat, Water Chemistry and Fish Assemblages of the Monkey River Watershed, Belize. MSc. thesis, University of Georgia.Google Scholar
  30. Friberg, N., N. Bonada, D. C. Bradley, M. J. Dunbar, F. K. Edwards, J. Grey, R. B. Hayes, A. G. Hildrew, N. Lamouroux, M. Trimmer & G. Woodward, 2011. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly. In Woodward, G. (ed.), Ecosystems in a Human-Modified Landscape: A European Perspective: 44 (Advances in Ecological Research). Academic Press, London: 1–68.Google Scholar
  31. Hajibabaei, M., S. Shokralla, X. Zhou, G. A. C. Singer & D. J. Baird, 2011. Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE 6: e17497.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Harding, J., J. M. Quinn & C. W. Hickey, 2000. Effects of mining and production forestry. In Collier, K. J. & M. J. Winterbourn (eds), New Zealand Stream Invertebrates: Ecology and Implications for Management. New Zealand Limnological Society, Christchurch: 230–259.Google Scholar
  33. Hawkins, C. P., R. H. Norris, J. N. Hogue & J. W. Feminella, 2000. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications 10: 1456–1477.CrossRefGoogle Scholar
  34. Heino, J., 2014. Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: are the inferences transferable among regions? Ecological Indicators 36: 186–194.CrossRefGoogle Scholar
  35. Helson, J. E. & D. D. Williams, 2013. Development of a macroinvertebrate multimetric index for the assessment of low-land streams in the neotropics. Ecological Indicators 29: 167–178.CrossRefGoogle Scholar
  36. Hilsenhoff, W. L., 1988. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society 7: 65–68.CrossRefGoogle Scholar
  37. Jacobsen, D., 1998. The effect of organic pollution on the macroinvertebrate fauna of Ecuadorian highland streams. Archiv Fur Hydrobiologie 143: 179–195.CrossRefGoogle Scholar
  38. Jacobsen, D., C. Cressa, J. M. Mathooko & D. Dudgeon, 2008. Macroinvertebrates: composition, life histories and production. In Dudgeon, D. (ed.), Tropical Stream Ecology. Elsevier Academic Press, London: 66–96.Google Scholar
  39. Jones, F. C., 2008. Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews 16: 45–69.CrossRefGoogle Scholar
  40. Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger & D. V. Peck, 1999. Quantifying Physical Habitat in Wadeable Streams. Environmental Protection Agency, Washington, D.C.: 102.Google Scholar
  41. Knee, K. L. & A. C. Encalada, 2013. Land Use and Water Quality in a Rural Cloud Forest Region (Intag, Ecuador). River Research and Applications 30: 385–401.CrossRefGoogle Scholar
  42. Kobingi, N., P. O. Raburu, F. O. Masese & J. Gichuki, 2009. Assessment of pollution impacts on the ecological integrity of the Kisian and Kisat rivers in Lake Victoria drainage basin, Kenya. African Journal of Environmental Science and Technology 3: 097–107.Google Scholar
  43. Kolkwitz, R. & M. Marsson, 1909. Ökologie der tierischen Saprobien. Beiträge zur Lehre von der biologischen Gewässerbeurteilung. Internationale Revue der gesamten Hydrobiologie und Hydrographie 2: 126–152.CrossRefGoogle Scholar
  44. Kratzer, E. B., J. K. Jackson, D. B. Arscott, A. K. Aufdenkampe, C. L. Dow, L. A. Kaplan, J. D. Newbold & B. W. Sweeney, 2006. Macroinvertebrate distribution in relation to land use and water chemistry in New York City drinking-water-supply watersheds. Journal of the North American Benthological Society 25: 954–976.CrossRefGoogle Scholar
  45. Lenat, D. R. & V. H. Resh, 2001. Taxonomy and stream ecology. The benefits of genus and species level identifications. Journal of the North American Benthological Society 20: 287–298.CrossRefGoogle Scholar
  46. Lewis, W. M. J., 2008. Physical and chemical features of tropical flowing waters. In Dudgeon, D. (ed.), Tropical Stream Ecology. Academic Press, USA: 1–22.CrossRefGoogle Scholar
  47. Ligeiro, R., R. M. Hughes, P. R. Kaufmann, D. R. Macedo, K. R. Firmiano, W. R. Ferreira, D. Oliveira, A. S. Melo & M. Callisto, 2013. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators 25: 45–57.CrossRefGoogle Scholar
  48. Lorion, C. M. & B. P. Kennedy, 2009. Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropical headwater streams. Freshwater Biology 54: 165–180.CrossRefGoogle Scholar
  49. Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall Hunt Publishing Company, Iowa.Google Scholar
  50. Metzeling, L., S. Perriss & D. Robinson, 2006. Can the detection of salinity and habitat simplification gradients using rapid bioassessment of benthic invertebrates be improved through finer taxonomic resolution or alternative indices? Hydrobiologia 572: 235–252.CrossRefGoogle Scholar
  51. Monk, W. A., P. J. Wood, D. M. Hannah, C. A. Extence, R. P. Chadd & M. J. Dunbar, 2012. How does macroinvertebrate taxonomic resolution influence ecohydrological relationships in riverine ecosystems. Ecohydrology 5: 36–45.CrossRefGoogle Scholar
  52. Moya, N., R. M. Hughes, E. Domínguez, F.-M. Gibon, E. Goitia & T. Oberdorff, 2011. Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecological Indicators 11: 840–847.CrossRefGoogle Scholar
  53. Mugnai, R., J. L. Nessimian & D. F. Baptista, 2010. Manual de Identificacao de Macroinvertebrados Aquaticos. Technical Books Editora, Rio de Janeiro.Google Scholar
  54. Murphy, J. F., J. Davy-Bowker, B. McFarland & S. J. Ormerod, 2013. A diagnostic biotic index for assessing acidity in sensitive streams in Britain. Ecological Indicators 24: 562–572.CrossRefGoogle Scholar
  55. Naranjo López, C., D. D. González Lazo, A. L. Blandimarte, S. Munoz Riveaux & Y. Musle Cordero, 2005. Una metodología rápida y de fácil aplicación para la evaluación de la calidad del agua utilizando el índice BMWP-Cub para ríos cubanos. Revista Tecnura 9: 65–76.Google Scholar
  56. Natural Resources Conservation Service, 1998. Stream Visual Assessment Protocol, Washington, DC.Google Scholar
  57. Neff, M. R. & D. A. Jackson, 2011. Effects of broad-scale geological changes on patterns in macroinvertebrate assemblages. Journal of the North American Benthological Society 30: 459–473.CrossRefGoogle Scholar
  58. Odum, E. P., J. T. Finn & E. H. Franz, 1979. Perturbation theory and the subsidy-stress gradient. Bioscience 29: 349–352.CrossRefGoogle Scholar
  59. Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kauffman, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. Cappaert, 2006. Environmental Monitoring and Assessment Program-Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams. Washington, DC, U.S. Environmental Protection Agency.Google Scholar
  60. Poquet, J. M., J. Alba-Tercedor, T. Punti, M. D. Sanchez-Montoya, S. Robles, M. Alvarez, C. Zamora-Munoz, C. E. Sainz-Cantero, M. R. Vidal-Abarca, M. L. Suarez, M. Toro, A. M. Pujante, M. Rieradevall & N. Prat, 2009. The MEDiterranean Prediction And Classification System (MEDPACS): an implementation of the RIVPACS/AUSRIVAS predictive approach for assessing Mediterranean aquatic macroinvertebrate communities. Hydrobiologia 623: 153–171.CrossRefGoogle Scholar
  61. Raburu, P. O., J. B. Okeyo-Owuor & F. O. Masese, 2009. Macroinvertebrate-based Index of biotic integrity (M-IBI) for monitoring the Nyando River, Lake Victoria Basin, Kenya. Scientific Research and Essays 4: 1468–1477.Google Scholar
  62. Resh, V. H., 2007. Multinational, freshwater biomonitoring programs in the developing world: lessons learned from African and Southeast Asian river surveys. Environmental Management 39: 737–748.CrossRefPubMedGoogle Scholar
  63. Richards, C., R. Haro, L. Johnson & G. Host, 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology 37: 219–230.CrossRefGoogle Scholar
  64. Ríos-Touma, B., R. Acosta & N. Prat, 2014. The Andean Biotic Index (ABI): revised tolerance to pollution values for macroinvertebrate families and index performance evaluation. Revista de Biología Tropical 62: 249–273.CrossRefPubMedGoogle Scholar
  65. Roque, F. O., L. S. Lecci, T. Siqueira & C. G. Froehlich, 2008. Using environmental and spatial filters to explain stonefly occurrences in southeastern Brazilian streams: implications for biomonitoring. Acta Limnologica Brasiliensia 20: 35–44.Google Scholar
  66. Schäfer, R. B., T. Caquetc, K. Siimesd, R. Muellere, L. Lagadicc & M. Liessa, 2007. Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Science of the Total Environment 382: 272–285.CrossRefPubMedGoogle Scholar
  67. Smith, M. J., W. R. Kay, D. H. D. Edward, P. J. Papas, K. S. J. Richardson, J. C. Simpson, A. M. Pinder, D. J. Cale, P. H. J. Horwitz, J. A. Davis, F. H. Yung, R. H. Norris & S. A. Halse, 1999. AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology 41: 269–282.CrossRefGoogle Scholar
  68. Springer, M., A. Ramirez & P. Hanson, 2010. Macroinvertebrados de Agua Dulce de Costa Rica I, Vol. 58 (Supl. 4). Revista de Biologia Tropical, San Jose, Costa Rica.Google Scholar
  69. Statistical Institute of Belize, 2016. Population estimates by Major Administrative Areas and Sex, 2008–2016. Accessed 08 November 2016.
  70. Stein, E. D., B. P. White, R. D. Mazor, J. K. Jackson, J. M. Battle, P. E. Miller, E. M. Pilgrim & B. W. Sweeney, 2014. Does DNA barcoding improve performance of traditional stream bioassessment metrics? Freshwater Science 33: 302–311.CrossRefGoogle Scholar
  71. Sutherland, A. B., J. M. Culp & G. A. Benoy, 2012. Evaluation of deposited sediment and macroinvertebrate metrics used to quantify biological response to excessive sedimentation in agricultural streams. Environmental Management 50: 50–63.CrossRefPubMedGoogle Scholar
  72. Taylor, B. R., 1997. Rapid assessment procedures: radical re-invention or just sloppy science? Human and Ecological Risk Assessment: An International Journal 3: 1005–1016.CrossRefGoogle Scholar
  73. Thorne, R. S. & W. P. Williams, 1997. The response of benthic macroinvertebrates to pollution in developing countries: a multimetric system of bioassessment. Freshwater Biology 37: 671–686.CrossRefGoogle Scholar
  74. Tomanova, S. & P. A. Tedesco, 2007. Body size, ecological tolerance and potential for water quality bioindication in the genus Anacroneuria (Plecoptera: Perlidae) from South America. Revista De Biologia Tropical 55: 67–81.PubMedGoogle Scholar
  75. Tomanova, S. & P. Usseglio-Polatera, 2007. Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology 170: 243–255.CrossRefGoogle Scholar
  76. Tomanova, S., N. Moya & T. Oberdorff, 2008. Using macroinvertebrate biological traits for assessing biotic integrity of neotropical streams. River Research and Applications 24: 1230–1239.CrossRefGoogle Scholar
  77. Waite, I. R., A. T. Herlihy, D. P. Larsen, N. S. Urquhart & D. J. Klemm, 2004. The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: an example from the Mid-Atlantic Highlands, USA. Freshwater Biology 49: 474–489.CrossRefGoogle Scholar
  78. Woodiwiss, F. S., 1964. The biological system of stream classification used by the River Trent Board. Chemistry and Industry 14: 443–447.Google Scholar
  79. Wright, J. F., 2000. An Introduction to RIVPACS. Freshwater Biological Association, Ambleside.Google Scholar
  80. WWAP (United Nations World Water Assessment Programme), 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. UNESCO, Paris.Google Scholar
  81. Wyżga, B., P. Oglęcki, H. Hajdukiewicz, J. Zawiejska, A. Radecki-Pawlik, T. Skalski & P. Mikuś, 2013. Interpretation of the invertebrate-based BMWP-PL index in a gravel-bed river: insight from the Polish Carpathians. Hydrobiologia 712: 71–88.CrossRefGoogle Scholar
  82. Yates, A. & R. Bailey, 2010. Covarying patterns of macroinvertebrate and fish assemblages along natural and human activity gradients: implications for bioassessment. Hydrobiologia 637: 87–100.CrossRefGoogle Scholar
  83. Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Lancaster Environment CentreLancaster UniversityLancashireUK
  2. 2.The Freshwater Biological AssociationAmblesideUK
  3. 3.Institute of Science and the EnvironmentUniversity of WorcesterWorcestershireUK
  4. 4.APEM LimitedMidlothianUK

Personalised recommendations