Advertisement

Hydrobiologia

, Volume 792, Issue 1, pp 331–344 | Cite as

Feeding patterns of dominating small pelagic fish in the Gulf of Riga, Baltic Sea

  • Henn Ojaveer
  • Ain Lankov
  • Marilyn Teder
  • Mart Simm
  • Riina Klais
Primary Research Paper

Abstract

We investigated the feeding of the dominant small pelagic fish—herring Clupea harengus membras and three-spined stickleback Gasterosteus aculeatus—in the Gulf of Riga (Baltic Sea) in the summers of 1999–2014. The share of empty stomachs, stomach fullness and taxonomic composition of fish diet was analysed. On average, large herring had the highest (19%) and small herring the lowest (6%) share of empty stomachs. Small (<1 mm) cladoceran Bosmina spp. was the most important prey for three-spined stickleback; preying on small (<1.5 mm) copepod Eurytemora affinis was the most efficient for small herring, while Bosmina spp. and E. affinis were equally important for the large herring, followed by the large (mean body length <2.0 mm) non-indigenous cladoceran Cercopagis pengoi. The number of prey taxa per stomach exhibited significant differences between the fish groups studied; the highest mean value was recorded for small herring and the lowest for three-spined stickleback (2.1 and 1.4 taxa, respectively). Although present, the fish group-specific spatial dynamics in feeding parameters (share of empty stomachs and feeding intensity) were weak compared to the observed interannual variation.

Keywords

Herring Clupea harengus membras Three-spined stickleback Gasterosteus aculeatus Diet composition Feeding activity Diversity of stomach content 

Notes

Acknowledgements

The authors are very grateful to Lars Rudstam and one anonymous reviewer for their constructive and professional critique that significantly improved the quality of the manuscript. This work resulted from the Joint Baltic Sea Research and Development Programme (BONUS) projects ‘Integrating spatial processes into ecosystem models for sustainable utilisation of fish resources’, INSPIRE and ‘Biodiversity changes—causes, consequences and management implications’, BIO-C3, which were supported by BONUS (Art 185), funded jointly by the European Union and Estonian Research Council. The work was partially funded by Estonian Ministry of Education and Research (Grant SF0180005s10 and institutional research funding IUT02-20). Participants of the Workshop on Spatial Analysis for the Baltic Sea of the International Council for the Exploration of the Sea (ICES WKSPATIAL) are thanked for discussions.

Supplementary material

10750_2016_3071_MOESM1_ESM.docx (407 kb)
Supplementary material 1 (DOCX 407 kb)

References

  1. Aksnes, D. L. & J. Giske, 1993. A theoretical model of aquatic visual feeding. Ecological modelling 67: 233–250.CrossRefGoogle Scholar
  2. AquaNIS. (2016). Information system on aquatic non-indigenous and cryptogenic species. http://www.corpi.ku.lt/databases/aquanis. Accessed 5 April 2016.
  3. Arrhenius, F., 1996. Diet composition and food selectivity of 0-group herring (Clupea harengus L.) and sprat (Sprattus sprattus (L.)) in the northern Baltic Sea. ICES Journal of Marine Science 53: 701–712.CrossRefGoogle Scholar
  4. Bushnoe, T. M., D. M. Warner, L. G. Rudstam & E. L. Mills, 2003. Cercopagis pengoi as a new prey item for alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in Lake Ontario. Journal of Great Lakes Research 29: 205–212.CrossRefGoogle Scholar
  5. Byström, P., U. Bergström, A. Hjälten, S. Ståhl, D. Jonsson & J. Olsson, 2015. Declining coastal piscivore populations in the Baltic Sea: Where and when do sticklebacks matter? AMBIO 44(Suppl. 3): S462–S471.CrossRefGoogle Scholar
  6. Cardinale, M. & F. Arrhenius, 2000. Decreasing weight-at-age of Atlantic herring (Clupea harengus) from the Baltic Sea between 1986 and 1996: A statistical analysis. ICES Journal of Marine Science 57: 882–893.CrossRefGoogle Scholar
  7. Casini, M., M. Cardinale & F. Arrhenius, 2004. Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES Journal of Marine Science 61: 1267–1277.CrossRefGoogle Scholar
  8. Demchuk, A., M. Ivanov, T. Ivanova, N. Polyakova, E. Mas-marti & D. Lajus, 2015. Feeding patterns in seagrass beds of three-spined stickleback Gasterosteus aculeatus juveniles at different growth stages. Journal of the Marine Biological Association of the United Kingdom 95: 1635–1643.CrossRefGoogle Scholar
  9. Drenner, R., 1978. Capture probability: The role of zooplankter escape in the selective feeding of planktivorous fish. Journal of the Fisheries Research Board of Canada 35: 1370–1373.CrossRefGoogle Scholar
  10. Gorokhova, E., T. Fagerberg & S. Hansson, 2004. Predation by herring (Clupea harengus) and sprat (Sprattus sprattus) on Cercopagis pengoi in a western Baltic Sea bay. ICES Journal of Marine Science 61: 959–965.CrossRefGoogle Scholar
  11. Hughes, R. N., 1997. Diet selection. In Godin, J.-G. (ed.), Behavioural Ecology of Teleost Fishes. Oxford University Press, Oxford: 134–162.Google Scholar
  12. HELCOM. 1988. Guidelines for the Baltic Monitoring Programme for the Third Stage. Baltic Sea Environmental Proceedings. No. 27D. HELCOM, Helsinki.Google Scholar
  13. HELCOM. 2010. Ecosystem Health of the Baltic Sea 2003–2007: HELCOM Initial Holistic Assessment. In Baltic Sea Environmental Proceedings No. 122. HELCOM, Helsinki.Google Scholar
  14. ICES, 2011. Report of the Workshop on Sexual Maturity Staging of Herring and Sprat (WKMSHS), 20–23 June 2011, Charlottenlund, Denmark. ICES CM 2011/ACOM:46. ICES, Copenhagen.Google Scholar
  15. ICES, 2014. Second Interim Report of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB). 10–14 February 2014, Kiel, Germany. ICES CM 2014/SSGRSP:06. ICES, Copenhagen.Google Scholar
  16. ICES. 2015. Report of the Baltic Fisheries Assessment Working Group (WGBFAS). 14–21 April 2015, ICES HQ, Copenhagen, Denmark. ICES CM 2015/ACOM:10. ICES, Copenhagen.Google Scholar
  17. Kalaus, M. & H. Ojaveer, 2014. Over one decade of invasion: The non-indigenous cladoceran Evadne anonyx G.O. Sars, 1897 in a low-salinity environment. Aquatic Invasions 9: 499–506.CrossRefGoogle Scholar
  18. Kornilovs, G., L. Sidrevics & J. W. Dippner, 2001. Fish and zooplankton interaction in the Central Baltic Sea. ICES Journal of Marine Science 58: 579–588.CrossRefGoogle Scholar
  19. Kostrichkina, E. M., 1968. Feeding relations of fishes in the Gulf of Riga. Rybokhozyajstvennye issledovaniya v bassejne Baltijskogo morya 4: 109–135 (in Russian).Google Scholar
  20. Kostrichkina, E. M., 1970. Feeding of three-spined stickleback in the Gulf of Riga. Trudy BaltNIIRH IV: 339–348 (in Russian).Google Scholar
  21. Kotterba, P., C. Kühn, C. Hammer & P. Polte, 2014. Predation of threespine stickleback (Gasterosteus aculeatus) on the eggs of Atlantic herring (Clupea harengus) in a Baltic Sea lagoon. Limnology and Oceanography 59: 578–587.CrossRefGoogle Scholar
  22. Köster, F. W., C. Möllmann, H.-H. Hinrichsen, K. Wieland, J. Tomkiewicz, G. Kraus, R. Voss, A. Makarchouk, B. R. MacKenzie, M. A. St, D. John, N. Schnack, T. Linkowski Rohlf & J. E. Beyer, 2005. Baltic cod recruitment—the impact of climate variability on key processes. ICES Journal of Marine Science 62: 1408–1425.CrossRefGoogle Scholar
  23. Lankov, A., H. Ojaveer, M. Simm, M. Põllupüü & C. Möllmann, 2010. Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): The importance of changes in the zooplankton community. Journal of Fish Biology 77: 2268–2284.CrossRefPubMedGoogle Scholar
  24. Leppäranta, M. & K. Myrberg, 2009. Physical Oceanography of the Baltic Sea. Praxis Publishing Ltd, Chichester UK.CrossRefGoogle Scholar
  25. Lilover, M.-J., U. Lips, J. Laanearu & B. Liljebladh, 1998. Flow regime in the Irbe Strait. Aquatic Sciences 60: 253–265.CrossRefGoogle Scholar
  26. Link, S. & J. Burnett, 2001. The relationship between stomach contents and maturity state for major northwest Atlantic fishes: New paradigms? Journal of Fish Biology 59: 783–794.CrossRefGoogle Scholar
  27. Lips, U., V. Zhurbas, M. Skudra & G. Väli, 2016. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part II: Mesoscale features and freshwater transport pathways. Continental Shelf Research 115: 44–52.CrossRefGoogle Scholar
  28. Livdāne, L., I. Putnis, G. Rubene, D. Elferts & A. Ikauniece, 2016. Baltic herring prey selectively on older copepodites of Eurytemora affinis and Limnocalanus macrurus in the Gulf of Riga. Oceanologia 58: 46–53.CrossRefGoogle Scholar
  29. Melnitchuk, G. L., 1980. Recommendations for Analysis and Calculations of Samples for Fish Feeding and Fish Production in Natural Conditions. GosNIORH, Moscow (in Russian).Google Scholar
  30. Möllmann, C., G. Kornilovs, M. Fetter & F. W. Köster, 2004. Feeding ecology of central Baltic Sea herring and sprat. Journal of Fish Biology 65: 1563–1581.CrossRefGoogle Scholar
  31. Ojaveer, H., A. Lankov, A. Lumberg & A. Turovski, 1997. Forage fishes in the brackish Gulf of Riga ecosystem (Baltic Sea). In Forage Fishes in Marine Ecosystems. Proceedings of the International Symposium on the Role of Forage Fishes in Marine Ecosystems. University of Alaska Fairbanks. Fairbanks, AK: 293–309.Google Scholar
  32. Ojaveer, E., A. Lumberg & H. Ojaveer, 1998. Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES Journal of Marine Science 55: 748–755.CrossRefGoogle Scholar
  33. Parker Stetter, S. L., L. D. Witzel, L. G. Rudstam, D. W. Einhouse & E. L. Mills, 2005. Energetic consequences of diet shifts in Lake Erie rainbow smelt (Osmerus mordax). Canadian Journal of Fisheries and Aquatic Sciences 62: 145–152.CrossRefGoogle Scholar
  34. Peltonen, H., M. Vinni, A. Lappalainen & J. Pönni, 2004. Spatial feeding patterns of herring (Clupea harengus L.), sprat (Sprattus sprattus L.), and the three-spined stickleback (Gasterosteus aculeatus L.) in the Gulf of Finland, Baltic Sea. ICES Journal of Marine Science 61: 966–971.CrossRefGoogle Scholar
  35. Quesenberry, N. J., P. J. Allen & Jr J. J. Cech, 2007. The influence of turbidity on three-spined stickleback foraging. Journal of Fish Biology 70: 965–972.CrossRefGoogle Scholar
  36. Raudsepp, U., 2001. Interannual and seasonal temperature and salinity variations in the Gulf of Riga and corresponding saline water inflow from the Baltic Proper. Nordic Hydrology 32: 135–160.Google Scholar
  37. Rönkkönen, S., E. Ojaveer, T. Raid & M. Viitasalo, 2004. Long-term changes in Baltic herring (Clupea harengus membras) growth in the Gulf of Finland. Canadian Journal of Fisheries and Aquatic Sciences 61: 219–229.CrossRefGoogle Scholar
  38. Rudstam, L. G., G. Aneer & M. Hildén, 1994. Top-down control in the pelagic Baltic ecosystem. Dana 10: 105–129.Google Scholar
  39. Sidrevics, L., V. Line, V. Berzinsh & G. Kornilovs, 1993. Long-term changes in zooplankton abundance in the Gulf of Riga. ICES CM 1993/L:15. ICES, Copenhagen.Google Scholar
  40. Storch, A. J., K. L. Schulz, C. E. Cáceres, P. M. Smyntek, J. M. Dettmers & M. A. Teece, 2007. Consumption of the exotic zooplankton by alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in three Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 64: 1314–1328.CrossRefGoogle Scholar
  41. Strickler, J. R., A. J. Udvadia, J. Marino, N. Radabaughi, J. Ziarek & A. Nihongi, 2005. Visibility as a factor in the copepod-planktivorous fish relationship. Scientia Marina 69(Suppl. 1): 111–124.CrossRefGoogle Scholar
  42. Stige, L. C., P. Dalpadado, E. Orlova, A.-C. Boulay, J. M. Durant, G. Ottersen & N. C. Stenseth, 2014. Spatiotemporal statistical analyses reveal predator-driven zooplankton fluctuations in the Barents Sea. Progress in Oceanography 120: 243–253.CrossRefGoogle Scholar
  43. Stipa, T., T. Tamminen & J. Seppälä, 1999. On the creation and maintenance of stratification in the Gulf of Riga. Journal of Marine Systems 23: 27–49.CrossRefGoogle Scholar
  44. van der Lingen, C. D., A. Bertrand, A. Bode, R. Brodeur, L. Cubillos, P. Espinoza, K. Friedland, S. Garrido, X. Irigoien, T. Miller, C. Möllmann, R. Rodriguez-Sanchez, H. Tanaka & A. Temming, 2009. Trophic dynamics. In Chreckley, D. M., J., Alheit, Y. Oozeki & C. Roy (eds), Climate Change and Small Pelagic Fish. Cambridge University Press, New York: 112–157.Google Scholar
  45. van Deurs, M., M. Koski & A. Rindorf, 2014. Does copepod size determine food consumption of particulate feeding fish? ICES Journal of Marine Science 71: 35–43.CrossRefGoogle Scholar
  46. Viitasalo, M., J. Flinkman & M. Viherluoto, 2001. Zooplanktivory in the Baltic Sea: A comparison of prey selectivity by Clupea harengus and Mysis mixta, with reference to prey escape reactions. Marine Ecology Progress Series 216: 191–200.CrossRefGoogle Scholar
  47. Visser, M., 1982. Prey selection by the three-spined stickleback (Gasterosteus aculeatus). Oecologia 55: 395–402.CrossRefPubMedGoogle Scholar
  48. Wootton, R. J., 1998. Feeding. In Wootton, R. J. (ed.), Ecology of Teleost Fishes, 2nd ed. Kluwer Academic Publishers, London: 27–63.Google Scholar
  49. Yurkovskis, A., F. Wulff, L. Rahm, A. Andrushaitis & M. Rodriguez-Medina, 1993. A nutrient budget of the Gulf of Riga; Baltic Sea. Estuarine, Coastal and Shelf Science 37: 113–127.CrossRefGoogle Scholar
  50. Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation on Bosmina longirostris: Body size selection versus visibility selection. Ecology 56: 232–237.CrossRefGoogle Scholar
  51. Zaret, T. M. & W. C. Kerfoot, 1980. The shape and swimming technique of Bosmina longirostris. Limnology and Oceanography 25: 126–133.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Henn Ojaveer
    • 1
  • Ain Lankov
    • 1
  • Marilyn Teder
    • 1
  • Mart Simm
    • 2
  • Riina Klais
    • 1
  1. 1.Estonian Marine InstituteUniversity of TartuPärnuEstonia
  2. 2.Estonian Marine InstituteUniversity of TartuTartuEstonia

Personalised recommendations