Hydrobiologia

, Volume 794, Issue 1, pp 1–16 | Cite as

Sex ratio variation in an exploited population of common octopus: ontogenic shifts and spatio-temporal dynamics

  • Alexandre Alonso-Fernández
  • Jaime Otero
  • Rafael Bañón
  • Jose Manuel Campelos
  • Juan Santos
  • Gonzalo Mucientes
Primary Research Paper

Abstract

Sex ratio is a fundamental demographic parameter with major implications for the dynamics, management, and conservation of animal populations. The objective was to study the main factors affecting the post-settlement population sex ratio (SR) of Octopus vulgaris off the NE Atlantic. We investigated the spatio-temporal dynamics in SR using more than 115,000 individual records obtained from onboard observers over a 14-year period. Generalized linear models were used to evaluate the abiotic and biotic factors affecting the variation in SR. The probability of catching a female decreased with size. Seasonal differences in SR resulted in a female-biased ratio in autumn and male dominance in summer. SR also varied along the bathymetric gradient with larger female proportion at deeper waters in winter and spring. The probability of catching a female was lower in hard substrates mainly in summer. Upwelling intensity and sea surface temperature did not show substantial effects on SR. The analysis neither revealed an influence of local density on SR. The spatio-temporal patterns of SR in O. vulgaris are likely based on differences in sexual behavior and life history which may affect catchability rates. Understanding the causes in SR patterns will provide valuable knowledge for future assessment and management plans.

Keywords

Sex ratio Life history Fisheries Octopus vulgaris NE Atlantic 

Supplementary material

10750_2016_3065_MOESM1_ESM.pdf (393 kb)
Supplementary material 1 (PDF 393 kb)
10750_2016_3065_MOESM2_ESM.pdf (5 kb)
Supplementary material 2 (PDF 5 kb)
10750_2016_3065_MOESM3_ESM.pdf (34 kb)
Supplementary material 3 (PDF 33 kb)
10750_2016_3065_MOESM4_ESM.pdf (610 kb)
Supplementary material 4 (PDF 610 kb)
10750_2016_3065_MOESM5_ESM.pdf (413 kb)
Supplementary material 5 (PDF 412 kb)
10750_2016_3065_MOESM6_ESM.pdf (10 kb)
Supplementary material 6 (PDF 9 kb)

References

  1. Alonso-Fernández, A., J. Otero, D. Villegas-Ríos & R. Bañón, 2014. Drivers of body size changes in a Pollachius pollachius stock in NE Atlantic coastal waters. Marine Ecology Progress Series 511: 223–235.CrossRefGoogle Scholar
  2. Álvarez-Salgado, X. A., S. Beloso, I. Joint, E. M. Nogueira, L. Chou, F. F. Pérez, S. Groom, J. M. Cabanas, A. P. Rees & M. Elskens, 2002. New production of the NW Iberian shelf during the upwelling season over the period 1982-1999. Deep Sea Research 49: 1725–1739.CrossRefGoogle Scholar
  3. Álvarez, I., M. Gomez-Gesteira, M. deCastro, M. N. Lorenzo, A. J. C. Crespo & J. M. Dias, 2011. Comparative analysis of upwelling influence between the western and northern coast of the Iberian Peninsula. Continental Shelf Research 31: 388–399.CrossRefGoogle Scholar
  4. Álvarez, I., M. Gomez-Gesteira, M. deCastro & E. M. Novoa, 2008. Ekman transport along the Galician Coast (NW, Spain) calculated from QuikSCAT winds. Journal of Marine Systems 72: 101–115.CrossRefGoogle Scholar
  5. Amor, M. D., M. D. Norman, A. Roura, T. S. Leite, I. G. Gleadall, A. Reid, C. Perales-Raya, C.-C. Lu, C. J. Silvey, E. A. G. Vidal, F. G. Hochberg, X. Zheng & J. M. Strugnell, 2016. Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences. Zoologica Scripta. doi:10.1111/zsc.12207.Google Scholar
  6. Arkhipkin, A. I. & D. A. J. Middleton, 2002. Sexual segregation in ontogenetic migrations by the squid Loligo gahi around the Falkland Islands. Bulletin of Marine Science 71: 109–127.Google Scholar
  7. Bakun, A., 1973. Coastal upwelling indices, west coast of North America, 1946–71 NOAA Technical report. vol NMFS-671. NOAA NMFS-671, 103.Google Scholar
  8. Belcari, P., D. Cuccu, M. González, A. Srairi & P. Vidoris, 2002. Distribution and abundance of Octopus vulgaris Cuvier, 1797 (Cephalopoda: Octopoda) in the Mediterranean Sea. Scientia Marina 66: 157–166.CrossRefGoogle Scholar
  9. Bloor, I. S. M., V. J. Wearmouth, S. P. Cotterell, M. J. McHugh, N. E. Humphries, E. L. Jackson, M. J. Attrill & D. W. Sims, 2013. Movements and behaviour of European common cuttlefish Sepia officinalis in English Channel inshore waters: First results from acoustic telemetry. Journal of Experimental Marine Biology and Ecology 448: 19–27.CrossRefGoogle Scholar
  10. Bowyer, R. T., 2004. Sexual segregation in ruminants: definitions, hypotheses, and implications for conservation and management. Journal of Mammalogy 85: 1039–1052.CrossRefGoogle Scholar
  11. Boyle, P. & P. Rodhouse, 2005. Cephalopods: Ecology and Fisheries. Blackwell Science, Oxford.CrossRefGoogle Scholar
  12. Cerviño, S., 2014. Estimating growth from sex ratio-at-length data in species with sexual size dimorphism. Fisheries Research 160: 112–119.CrossRefGoogle Scholar
  13. DeMartini, E. E., J. H. Uchiyama & H. A. Williams, 2000. Sexual maturity, sex ratio, and size composition of swordfish, Xiphias gladius, caught by the Hawaii-based pelagic longline fishery. Fishery Bulletin 98: 489–506.Google Scholar
  14. Domain, F., D. Jouffre & A. Caverivière, 2000. Growth of Octopus vulgaris from tagging in Senegalese waters. Journal of the Marine Biological Association of the United Kingdom 80: 699–705.CrossRefGoogle Scholar
  15. Donald, P. F., 2007. Adult sex ratios in wild bird populations. Ibis 149: 671–692.CrossRefGoogle Scholar
  16. Downey, N. J., M. J. Roberts & D. Baird, 2010. An investigation of the spawning behaviour of the chokka squid Loligo reynaudii and the potential effects of temperature using acoustic telemetry. ICES Journal of Marine Science: Journal du Conseil 67: 231–243.CrossRefGoogle Scholar
  17. Engen, S., R. Lande & B.-E. SÆther, 2003. Demographic stochasticity and Allee effects in populations with to sexes. Ecology 84: 2378–2386.CrossRefGoogle Scholar
  18. FAO, 2016. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Food and Agriculture Organization of the United Nations Fisheries and Aquaculture Department. Fisheries and Aquaculture Department Rome, Italy, 200.Google Scholar
  19. Faraj, A. & N. Bez, 2007. Spatial considerations for the Dakhla stock of Octopus vulgaris: indicators, patterns, and fisheries interactions. ICES Journal of Marine Science 64: 1820–1828.CrossRefGoogle Scholar
  20. Farley, J. H., J. P. Eveson, T. L. O. Davis, R. Andamari, C. H. Proctor, B. Nugraha & C. R. Davies, 2014. Demographic structure, sex ratio and growth rates of Southern Bluefin Tuna (Thunnus maccoyii) on the spawning ground. PLoS ONE 9: e96392.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fernández-Rueda, P. & L. García-Flórez, 2007. Octopus vulgaris (Mollusca: Cephalopoda) fishery management assessment in Asturias (north-west Spain). Fisheries Research 83: 351–354.CrossRefGoogle Scholar
  22. Fisher, R. A., 1930. The genetical theory of natural selection. Clarendon Press, Oxford.CrossRefGoogle Scholar
  23. Fournier, D. A., H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, A. Nielsen & J. Sibert, 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27: 233–249.CrossRefGoogle Scholar
  24. Freire, J. & A. García-Allut, 2000. Socioeconomic and biological causes of management failures in European artisanal fisheries: the case of Galicia (NW Spain). Marine Policy 24: 375–384.CrossRefGoogle Scholar
  25. Fuentes, L. & J. Iglesias, 2010. Release experiments with Octopus vulgaris Cuvier, 1797 in Galicia, NW Spain. First results on recapture rate, distribution. Vie et Milieu 60: 65–71.Google Scholar
  26. Garci, M. E., J. Hernández-Urcera, M. Gilcoto, R. Fernández-Gago, Á. F. González & Á. Guerra, 2016. From brooding to hatching: new insights from a female Octopus vulgaris in the wild. Journal of the Marine Biological Association of the United Kingdom 96: 1341–1346.CrossRefGoogle Scholar
  27. González, A. F., J. Otero, A. Guerra, R. Prego, F. J. Rocha & A. W. Dale, 2005. Distribution of common octopus and common squid paralarvae in a wind-driven upwelling area (Ria of Vigo, northwestern Spain). Journal of Plankton Research 27: 271–277.CrossRefGoogle Scholar
  28. Goñi, R., O. Reñones & A. Quetglas, 2001. Dynamics of a protected Western Mediterranean population of the European spiny lobster Palinurus elephas (Fabricius, 1787) assessed by trap surveys. Marine and Freshwater Research 52: 1577–1587.CrossRefGoogle Scholar
  29. Hailey, A. & R. E. Willemsen, 2000. Population density and adult sex ratio of the tortoise Testudo hermanni in Greece: evidence for intrinsic population regulation. Journal of Zoology 251: 325–338.CrossRefGoogle Scholar
  30. Han, Y.-S. & W.-N. Tzeng, 2006. Use of the sex ratio as a means of resource assessment for the Japanese Eel Anguilla japonica: a case study in the Kaoping river. Taiwan. Zoological Studies 45: 255–263.Google Scholar
  31. Hanlon, R. T. & J. B. Messenger, 1996. Cephalopod behaviour. Cambridge University Press, Cambrige.Google Scholar
  32. Hardy, C. W., 2002. Sex Ratios. Concepts and Research Methods. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  33. Hatanaka, H., 1979. Studies on the fisheries biology of common octopus off the northwest coast of Africa. Bulletin Far Seas Fisheries Research Laboratory 17: 13–124.Google Scholar
  34. Hernández-García, V., J. L. Hernández-López & J. J. Castro-Hdez, 2002. On the reproduction of Octopus vulgaris off the coast of the Canary Islands. Fisheries Research 57: 197–203.CrossRefGoogle Scholar
  35. Janzen, F. J., 1994. Climate change and temperature-dependent sex determination in reptiles. Proceedings of the National Academy of Sciences 91: 7487–7490.CrossRefGoogle Scholar
  36. Jereb, P., A., L. L. Allcock, E., U. Piatkowski, L. C. Hastie & G. J. Pierce, 2015. Cephalopod Biology and Fisheries in Europe: II. Species Accounts, vol 325, Denmark.Google Scholar
  37. Katsanevakis, S. & G. Verriopoulos, 2006. Modelling the effect of temperature on hatching and settlement patterns of meroplanktonic organisms: the case of octopus. Scientia Marina 70: 699–708.CrossRefGoogle Scholar
  38. Kendall, N. W. & T. P. Quinn, 2013. Size-selective fishing affects sex ratios and the opportunity for sexual selection in Alaskan sockeye salmon Oncorhynchus nerka. Oikos 122: 411–420.CrossRefGoogle Scholar
  39. Kennedy, J. S., 1985. Migration, behavioral and ecological. In Rankin, M. A. (ed.), Migration: Mechanisms and Adaptive Significance, Vol. 27. Contributions in Marine Science, Port Aransas: 5–26.Google Scholar
  40. Kokko, H., T. G. Gunnarsson, L. J. Morrell & J. A. Gill, 2006. Why do female migratory birds arrive later than males? Journal of Animal Ecology 75: 1293–1303.CrossRefPubMedGoogle Scholar
  41. Kruuk, L. E. B., T. H. Clutton-Brock, S. D. Albon, J. M. Pemberton & F. E. Guinness, 1999. Population density affects sex ratio variation in red deer. Nature 399: 459–461.CrossRefPubMedGoogle Scholar
  42. Lawrence, A. J. & J. M. Soame, 2004. The effects of climate change on the reproduction of coastal invertebrates. Ibis 146: 29–39.CrossRefGoogle Scholar
  43. MacDiarmid, A. B., 1991. Seasonal changes in depth distribution, sex ratio and size requency of spiny lobster Jasus edwardsii on a coastal reef in nothern New Zealand. Marine Ecology Progress Series 70: 129–141.CrossRefGoogle Scholar
  44. Manning, J. A., S. A. Medill & P. D. McLoughlin, 2015. Climate fluctuations interact with local demography and resources to predict spatially dynamic adult sex ratios in a megaherbivore. Oikos 124: 1132–1141.CrossRefGoogle Scholar
  45. Mayr, E., 1939. The sex ratio in wild birds. The American Naturalist 73: 156–179.CrossRefGoogle Scholar
  46. McCullagh, P. & J. A. Nelder, 1989. Generalized Linear Models. Chapman and Hall, London: 511.CrossRefGoogle Scholar
  47. McKellar, A., M. Turcotte & A. Hendry, 2009. Environmental factors influencing adult sex ratio in Trinidadian guppies. Oecologia 159: 735–745.CrossRefPubMedGoogle Scholar
  48. Meisel, D., R. Byrne, M. Kuba, U. Griebel & J. Mather, 2003. Circadian rhythms in Octopus vulgaris. Berliner Paläobiol Abh 3: 171–177.Google Scholar
  49. Mereu, M., B. Agus, P. Addis, S. Cabiddu, A. Cau, M. C. Follesa & D. Cuccu, 2015a. Movement estimation of Octopus vulgaris Cuvier, 1797 from mark recapture experiment. Journal of Experimental Marine Biology and Ecology 470: 64–69.CrossRefGoogle Scholar
  50. Mereu, M., B. Agus, R. Cannas, A. Cau, E. Coluccia & D. Cuccu, 2015b. Mark–recapture investigation on Octopus vulgaris specimens in an area of the central western Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 95: 131–138.CrossRefGoogle Scholar
  51. Morais, P. & F. Daverat, 2016. Definitions and concepts related to fish migration. In Morais, P. & F. Daverat (eds), An introduction to fish migration. CRC Press, Boca Raton, USA: 14–19.Google Scholar
  52. Moreno, A., S. Lourenço, J. Pereira, M. B. Gaspar, H. N. Cabral, G. J. Pierce & A. M. P. Santos, 2014. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fisheries Research 152: 74–85.CrossRefGoogle Scholar
  53. Morgan, M. J., 2008. Integrating reproductive biology into scientific advice for fisheries management. Journal of Northwest Atlantic fishery science 41: 37–51.CrossRefGoogle Scholar
  54. Morgan, M. J. & E. A. Trippel, 1996. Skewed sex ratios in spawning shoals of Atlantic cod (Gadus morhua). ICES Journal of Marine Science 53: 820–826.CrossRefGoogle Scholar
  55. Mucientes, G. R., N. Queiroz, L. L. Sousa, P. Tarroso & D. W. Sims, 2009. Sexual segregation of pelagic sharks and the potential threat from fisheries. Biology Letters 5: 156–159.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Oosthuizen, A. & M. J. Smale, 2003. Population biology of Octopus vulgaris on the temperate south-eastern coast of South Africa. Journal of the Marine Biological Association of the United Kingdom 83: 535–541.CrossRefGoogle Scholar
  57. Ospina-Álvarez, N. & F. Piferrer, 2008. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3: e2837.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Otero, J., X. A. Álvarez-Salgado, A. F. González, A. Miranda, S. B. Groom, J. M. Cabanas, G. Casas, B. Wheatley & A. Guerra, 2008. Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean. Marine Ecology Progress Series 362: 181–192.CrossRefGoogle Scholar
  59. Otero, J., X. A. Álvarez-Salgado, Á. F. González, C. Souto, M. Gilcoto & Á. Guerra, 2016. Wind-driven upwelling effects on cephalopod paralarvae: Octopus vulgaris and Loliginidae off the Galician coast (NE Atlantic). Progress in Oceanography 141: 130–143.CrossRefGoogle Scholar
  60. Otero, J., Á. F. González, M. P. Sieiro & Á. Guerra, 2007. Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic. Fisheries Research 85: 122–129.CrossRefGoogle Scholar
  61. Oxenford, H. A. & W. Hunte, 1999. Feeding habits of the dolphinfish (Coryphaena hippurus) in the eastern Caribbean. Scientia Marina 63: 303–315.CrossRefGoogle Scholar
  62. Payne, N. L., B. M. Gillanders & J. Semmens, 2011. Breeding durations as estimators of adult sex ratios and population size. Oecologia 165: 341–347.CrossRefPubMedGoogle Scholar
  63. Pierce, G. J., L. Allcock, I. Bruno, P. Bustamante, A. González, A. Guerra, P. Jereb, E. Lefkaditou, S. Malham, A. Moreno, J. Pereira, U. Piatkowski, M. Rasero, P. Sánchez, B. Santos, M. Santurtún, S. Seixas & R. Villanueva, 2010. Cephalopod biology and fisheries in Europe, Vol. 303. ICES Cooperative Research Report No, Denmark: 175.Google Scholar
  64. Plummer, M., N. Best, K. Cowles & K. Vines, 2006. CODA: convergence diagnosis and output analysis for MCMC. R News 6: 7–11.Google Scholar
  65. Prevedelli, D. & R. Simonini, 2000. Effects of salinity and two food regimes on survival, fecundity and sex ratio in two groups of Dinophilus gyrociliatus (Polychaeta: Dinophilidae). Marine Biology 137: 23–29.CrossRefGoogle Scholar
  66. Quetglas, A., F. Alemany, A. Carbonell, P. Merella & P. Sánchez, 1998. Biology and fishery of Octopus vulgaris Cuvier, 1797, caught by trawlers in Mallorca (Balearic Sea, Western Mediterranean). Fisheries Research 36: 237–249.CrossRefGoogle Scholar
  67. R Development Core Team, 2014. R: A Language and Environment for Statistical Computing, Vienna. Austria, R Foundation for Statistical Computing.Google Scholar
  68. Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey & M. G. Schlax, 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate 20: 5473–5496.CrossRefGoogle Scholar
  69. Roura, Á., Á. F. González, K. Redd & Á. Guerra, 2012. Molecular prey identification in wild Octopus vulgaris paralarvae. Marine Biology 159: 1335–1345.CrossRefGoogle Scholar
  70. Sakaguchi, H., T. Hamano & A. Nakazono, 2000. Population structure of Octopus vulgaris estimated from catch size Composition in Northeastern Iyo-Nada of the Seto Inland Sea, Japan. Bulletin of the Japanese Society of Fisheries Oceanography 64: 224–234.Google Scholar
  71. Sieiro, P., J. Otero & Á. Guerra, 2014. Contrasting macroscopic maturity staging with histological characteristics of the gonads in female Octopus vulgaris. Hydrobiologia 730: 113–125.CrossRefGoogle Scholar
  72. Silva, L., I. Sobrino & F. Ramos, 2002. Reproductive biology of the common octopus, Octopus vulgaris Cuvier, 1797 (Cephalopoda: Octopodidae) in the Gulf of Cádiz (SW Spain). Bulletin of Marine Science 71: 837–850.Google Scholar
  73. Sinclair, J. P., J. Emlen & D. C. Freeman, 2012. Biased sex ratios in plants: theory and trends. The Botanical Review 78: 63–86.CrossRefGoogle Scholar
  74. Skaug, H., D. Fournier, B. Bolker, A. Magnusson & A. Nielsen, 2014. Generalized Linear Mixed Models using AD Model Builder. R package version 0.8.0, http://glmmadmb.r-forge.r-project.org/.
  75. Smith, C. D. & C. L. Griffiths, 2002. Aspects of the population biology of Octopus vulgaris in False Bay, South Africa. South African Journal of Marine Science 24: 185–192.CrossRefGoogle Scholar
  76. Solmundsson, J., H. Karlsson & J. Palsson, 2003. Sexual differences in spawning behaviour and catchability of plaice (Pleuronectes platessa) west of Iceland. Fisheries Research 61: 57–71.CrossRefGoogle Scholar
  77. Stewart, K. M., D. R. Walsh, J. G. Kie, B. L. Dick & R. T. Bowyer, 2015. Sexual segregation in North American elk: the role of density dependence. Ecology and Evolution 5: 709–721.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Villanueva, R., 1992. Deep-sea cephalopods of the north-western Mediterranean: indications of up-slope ontogenetic migration in two bathybenthic species. Journal of Zoology 227: 267–276.CrossRefGoogle Scholar
  79. Villegas-Ríos, D., J. Alós, M. Palmer, S. K. Lowerre-Barbieri, R. Bañón, A. Alonso-Fernández & F. Saborido-Rey, 2014. Life-history and activity shape catchability in a sedentary fish. Marine Ecology Progress Series 515: 239–250.CrossRefGoogle Scholar
  80. Wearmouth, V. J. & D. W. Sims, 2008. Sexual segregation in marine fish, reptiles, birds and mammals: Behaviour patterns, mechanisms and conservation implications. Advances in Marine Biology 54: 107–170.CrossRefPubMedGoogle Scholar
  81. Weimerskirch, H., J. Lallemand & J. Martin, 2005. Population sex ratio variation in a monogamous long-lived bird, the wandering albatross. Journal of Animal Ecology 74: 285–291.CrossRefGoogle Scholar
  82. Westermann, G. E. G., 1969. Sexual Dimorphism, migration, and segregation in living Cephalopods. In: Westermann C.E.G., ed. Dimorphism in Fossil Metazoa and Taxonomic Implication. International Palaeontological Union, Committee on Evolution 1: 18-20.Google Scholar
  83. Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York: 213.CrossRefGoogle Scholar
  84. Ziegler, P., M. Haddon, S. Frusher & C. Johnson, 2004. Modelling seasonal catchability of the southern rock lobster Jasus edwardsii by water temperature, moulting, and mating. Marine Biology 145: 179–190.CrossRefGoogle Scholar
  85. Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alexandre Alonso-Fernández
    • 1
  • Jaime Otero
    • 1
  • Rafael Bañón
    • 1
    • 2
  • Jose Manuel Campelos
    • 2
  • Juan Santos
    • 3
  • Gonzalo Mucientes
    • 4
    • 5
  1. 1.Instituto de Investigaciones MarinasConsejo Superior de Investigaciones Científicas, IIM-CSICVigoSpain
  2. 2.Servizo de Planificación, Dirección Xeral de Ordenación e Xestión dos Recursos MariñosConsellería do Mar - Xunta de GaliciaSantiago de CompostelaSpain
  3. 3.Thünen-Institute of Baltic Sea FisheriesRostockGermany
  4. 4.Centro de Investigação em Biodiversidade e Recursos Genéticos – CIBIO, Universidade do PortoVairãoPortugal
  5. 5.The Laboratory, Citadel HillMarine Biological Association of the United KingdomPlymouthUK

Personalised recommendations