Hydrobiologia

, Volume 792, Issue 1, pp 151–168

Phylogeography and population genetics of the European mudminnow (Umbra krameri) with a time-calibrated phylogeny for the family Umbridae

  • Saša Marić
  • David Stanković
  • Josef Wanzenböck
  • Radek Šanda
  • Tibor Erős
  • Péter Takács
  • András Specziár
  • Nenad Sekulić
  • Doru Bănăduc
  • Marko Ćaleta
  • Ilya Trombitsky
  • László Galambos
  • Sándor Sipos
  • Aleš Snoj
Primary Research Paper
  • 219 Downloads

Abstract

The genetic structure of European mudminnow populations throughout the species range was examined using mitochondrial DNA and seven microsatellite loci. Ten mitochondrial haplotypes were detected, suggesting three phylogeographic lineages, which likely diverged during the Early and Middle Pleistocene. These three lineages geographically correspond to three regions: the Danube drainage including the Drava system and Dniester Delta, the Sava system and the Tisza system. High genetic diversity observed using mtDNA was confirmed with microsatellite data, suggesting the existence of 14 populations in the studied area. The isolation-with-migration model showed that migration rates between populations were generally low and were highest between the Drava and its tributary Mura. According to the inferred relative population splitting times, Umbra krameri likely spread from the eastern part of the species range to the west, which also showed the highest genetic diversity and largest population size. As reported by the time-calibrated phylogeny, separation of the European and American Umbra occurred roughly at the end of Late Cretaceous and in the first half of the Paleogene (60.57 Ma with 95% highest probability density of 39.57–81.75). Taking these results into account, appropriate guidelines are proposed to conserve European mudminnow populations.

Keywords

Umbra krameri Umbridae mtDNA Microsatellites Time-calibrated phylogeny Conservation 

Supplementary material

10750_2016_3051_MOESM1_ESM.doc (82 kb)
Supplementary material 1 (DOC 82 kb)
10750_2016_3051_MOESM2_ESM.doc (64 kb)
Supplementary material 2 (DOC 64 kb)
10750_2016_3051_MOESM3_ESM.doc (68 kb)
Supplementary material 3 (DOC 68 kb)
10750_2016_3051_MOESM4_ESM.docx (27 kb)
Supplementary material 4 (DOCX 27 kb)

References

  1. Abell, R., 2002. Conservation biology for the biodiversity crisis: a freshwater follow-up. Conservation Biology 16: 1435–1437.CrossRefGoogle Scholar
  2. Adams, B., P. W. DeHaan, R. Tabor, B. Thompson & D. K. Hawkins, 2013. Characterization of tetranucleotide microsatellite loci for Olympic mudminnow (Novumbra hubbsi). Conservation Genetics Resources 5: 573–575.CrossRefGoogle Scholar
  3. Agassiz, L., 1853. Recent researches of Prof. Agassiz. American Journal of Science and Arts 16: 134–136.Google Scholar
  4. Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.CrossRefGoogle Scholar
  5. Akcakaya, H. R., G. Mills & C. P. Doncaster, 2007. The role of metapopulations in conservation. In Macdonald, D. W. & K. Service (eds), Key Topics in Conservation Biology. Blackwell Publishing, Oxford: 64–84.Google Scholar
  6. Ayres, D. L., A. Darling, D. J. Zwickl, P. Beerli, M. T. Holder, P. O. Lewis, J. P. Huelsenbeck, F. Ronquist, D. L. Swofford, M. P. Cummings, A. Rambaut & M. A. Suchard, 2012. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Systematic Biology 61: 170–173.CrossRefPubMedGoogle Scholar
  7. Bănăduc, D., 2008. Umbra krameri Walbaum, 1792 a Natura 2000 protected fish species, in Romania. Acta Ichtiologica Romanica 3: 33–44.Google Scholar
  8. Bănărescu, P. M. & D. Bănăduc, 2007. Habitats Directive (92/43/EEC) fish species (Osteichthyes) on the Romanian territory. Acta Ichtiologica Romanica 2: 43–78.Google Scholar
  9. Bănărescu, P. M., V. Otel & A. Wilhelm, 1995. The present status of Umbra krameri Walbaum in Romania. Annalen des Naturhistorischen Museums in Wien 97B: 496–501.Google Scholar
  10. Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste & F. Bonhomme, 1996–2004. GENETIX v. 4.04, Logiciel sous WindowsTM pour la Ge´ne´tique des Populations. Universite´ Montpellier 2, Laboratoire Ge´nome et Population, Montpellier.Google Scholar
  11. Brilly, M., 2010. Hydrological Processes of the Danube River Basin: Perspectives from the Danubian Countries. Springer, New York.CrossRefGoogle Scholar
  12. Brikiatis, L., 2014. The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography. Journal of Biogeography. doi:10.1111/jbi.12310.Google Scholar
  13. Cambray, J., 1997. Freshwater fish—a global biodiversity crisis. Hydrobiologia 353: 199–202.CrossRefGoogle Scholar
  14. Campbell, M. A. & J. A. López, 2014. Mitochondrial phylogeography of a Beringian relict: the endemic freshwater genus of blackfish Dallia (Esociformes). Journal of Fish Biology 84(2): 523–538.CrossRefPubMedGoogle Scholar
  15. Campbell, M. A., J. A. López, T. Sado & M. Miya, 2013. Pike and salmon as sister taxa: detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences. Gene 530: 57–65.CrossRefPubMedGoogle Scholar
  16. Campbell, M. A., G. K. Sage, R. L. DeWilde, J. A. López & S. L. Talbot, 2014. Development and characterization of 16 polymorphic microsatellite loci for the Alaska blackfish (Esociformes: Dallia pectoralis). Conservation Genetics Resources 6(2): 349–351.CrossRefGoogle Scholar
  17. Clement, M., D. Posada & K. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.CrossRefPubMedGoogle Scholar
  18. DeHaan, P. W., B. A. Adams, R. A. Tabor, D. K. Hawkins & B. Thompson, 2014. Historical and contemporary forces shape genetic variation in the Olympic mudminnow (Novumbra hubbsi), an endemic fish from Washington State, USA. Conservation Genetics 15: 1417–1431.CrossRefGoogle Scholar
  19. Denk, T., F. Grimsson, R. Zetter & L. A. Simonarson, 2011. The biogeographic history of Iceland—the North Atlantic Land Bridge revisited. Topics in Geobiology 35: 647–668.CrossRefGoogle Scholar
  20. Drummond, A. J., S. Y. W. Ho, M. J. Phillips & A. Rambaut, 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88. doi:10.1371/journal.pbio.0040088.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Estoup, A., P. Jarne & J.-M. Cournet, 2002. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular Ecology 11: 1591–1604.CrossRefPubMedGoogle Scholar
  23. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.CrossRefPubMedGoogle Scholar
  24. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  25. Frankham, R., J. D. Ballou, M. R. Dudash, M. D. B. Eldridge, C. B. Fenster, R. C. Lacy, J. R. Mendelson, I. J. Porton, K. Ralls & O. A. Ryder, 2012. Implications of different species concepts for conserving biodiversity. Biological Conservation 153: 25–31.CrossRefGoogle Scholar
  26. Freyhof, J., 2013. Umbra krameri. The IUCN Red List of Threatened Species. Version 2014.2. www.iucnredlist.org. Accessed on 11 November 2014.
  27. Funk, W. C., J. K. McKay, P. A. Hohenlohe & F. W. Allendorf, 2012. Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution 27(9): 489–496.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gábris, Gy & L. Mari, 2007. The Pleistocene beheading of the Zala River (West Hungary). Földrajzi értesítő 56: 39–50. [In Hungarian with an English summary].Google Scholar
  29. Gaudant, J., 2012. An attempt at the palaeontological history of the European mudminnows (Pisces, Teleostei, Umbridae). Neues Jahrbuch Fur Geologie Und Palaontologie-Abhandlungen 263(2): 93–109.CrossRefGoogle Scholar
  30. Gernhard, T., 2008. The conditioned reconstructed process. Journal Theoretical Biology 253: 769–778.CrossRefGoogle Scholar
  31. Gibbard, P. & T. van Kolfschoten, 2004. The Pleistocene and Holocene epochs. In Gradstein, F. M., J. G. Ogg & A. G. Smith (eds), A Geologic Time Scale. Cambridge University Press, Cambridge: 441–452.Google Scholar
  32. Gladenkov, A. Y., A. E. Oleinik, L. Marincovich & K. B. Barinov, 2002. A refined age for the earliest opening of Bering Strait. Palaeogeography Palaeoclimatology Palaeoecology 183: 321–328.CrossRefGoogle Scholar
  33. Goudet, J., 2002. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 15 October 2009.
  34. Govedič, M., 2010. Ribe reke Drave med Mariborom in Hrvaško mejo 35 let po izgradnji hidroelektrarn [Fish of Drava river between Maribor and Croatian border 35 years after construction of hydro power plants]. In Book of Abstracts–International conference on the Drava River–Life in the river basin, Slovenia, Dravograd (30. 09.–01. 10. 2010.). Jovan Hadži Institute of Biology Scientific Research Centre SASA, Municipality Dravograd, RRA Koroška–Regional Development Agency for Koroška, Ljubljana–Dravograd: 22–23.Google Scholar
  35. Grande, L., 1999. The first Esox (Esocidae: Teleostei) from the Eocene Green River Formation, and a brief review of esocid fishes. Journal of Vertebrate Paleontology 19: 271–292.CrossRefGoogle Scholar
  36. Grande, T., H. Laten & J. López, 2004. Phylogenetic relationships of extant Esocid species (Teleostei: Salmoniformes) based on morphological and molecular characters. Copeia, 2004: 743–757.CrossRefGoogle Scholar
  37. Hajdú, J., L. Várkonyi, J. Ševc & T. Müller, 2015. Corrective notice to the European mudminnow (Umbra krameri Walbaum, 1792) record from the Black Sea. Biologia 70: 1429–1431.CrossRefGoogle Scholar
  38. Haponski, A. E. & C. A. Stepien, 2013. Phylogenetic and biogeographical relationships of the Sander pikeperches (Percidae: Perciformes): patterns across North America and Eurasia. Biological Journal of the Linnean Society 110: 156–179.CrossRefGoogle Scholar
  39. Hardy, O. J. & X. Vekemans, 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618.CrossRefGoogle Scholar
  40. Hardy, O. J., N. Charbonnel, H. Freville & M. Heuertz, 2003. Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163: 1467–1482.PubMedPubMedCentralGoogle Scholar
  41. Hey, J. & R. Nielsen, 2007. Integration within the Felsenstein equation for improved Markov Chain Monte Carlo methods in population genetics. Proceedings of the National Academy of Sciences 104: 2785–2790.CrossRefGoogle Scholar
  42. Ishiguro N. B., M. Miya & M. Nishida, 2003. Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii”. Molecular Phylogenetics and Evolution 27: 476–488.Google Scholar
  43. Keane, T. M., C. J. Creevey, M. M. Pentony, T. J. Naughton & J. O. McInerney, 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology 6: 29. doi:10.1186/1471-2148-6-29.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.CrossRefPubMedGoogle Scholar
  45. Kuehne, M. L. & D. J. Olden, 2014. Ecology and conservation of mudminnow species worldwide. Fisheries 39: 341–351.CrossRefGoogle Scholar
  46. Kuhner, M. K., 2009. Coalescent genealogy samplers: windows into population history. Trends in Ecology and Evolution 24: 86–93.CrossRefPubMedGoogle Scholar
  47. Lambeck, R. J., 1997. Focal species: a multi-species umbrella for nature conservation. Conservation Biology 11: 849–856.CrossRefGoogle Scholar
  48. Langella, O., 2002. Populations 1.2.28. Logiciel de génétique des populations. Laboratoire Populations, génétique et évolution, CNRS UPR 9034, Gif-sur-Yvette. http://www.cnrs-gif.fr/pge/. Accessed 10 October 2009.
  49. López, A., P. Bentzen & W. Pietsch, 2000. Phylogenetic relationships of Esocoid fishes (Teleostei) based on partial cytochrome b and 16S mitochondrial DNA sequences. Copeia 2: 420–431.CrossRefGoogle Scholar
  50. López, A., W. Chen & W. Ortí, 2004. Esociform phylogeny. Copeia 3: 449–464.CrossRefGoogle Scholar
  51. Mace, G. M., H. P. Possingham & N. Leader-Williams, 2007. Prioritizing choices in conservation. In Macdonald, D. W. & K. Service (eds), Key Topics in Conservation Biology. Blackwell Publishing, Oxford: 17–34.Google Scholar
  52. Machordom, A. & I. Doadrio, 2001. Evidence of a Cenozoic Betic–Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Molecular Phylogenetics and Evolution 18: 252–263.CrossRefPubMedGoogle Scholar
  53. Marić, S., A. Snoj, N. Sekulić, J. Krpo-Ćetković, R. Šanda & V. Jojić, 2015. Genetic and morphological variability of the European mudminnow Umbra krameri (Teleostei, Umbridae) in Serbia and in Bosnia and Herzegovina—a basis for future conservation activities. Journal of Fish Biology 86(5): 1534–1548.CrossRefPubMedGoogle Scholar
  54. Marko, P. B. & M. W. Hart, 2012. Retrospective coalescent methods and the reconstruction of metapopulation histories in the sea. Evolutionary Ecology 26: 291–315.CrossRefGoogle Scholar
  55. Mangerud, J., M. Jakobsson, H. Alexanderson, V. Astakhov, G. K. C. Clarke, M. Henriksen, C. Hjort, G. Krinner, J. Lunkka, P. Möller, A. Murray, O. Nikolskaya, M. Saarnisto & J. Svendsen, 2004. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews 23: 1313–1332.CrossRefGoogle Scholar
  56. Mikschi, E. & J. Wanzenböck, 1995. Proceedings of the First International Workshop on Umbra krameri. Annalen des Naturhistorischen Museums in Wien 97B: 438–508.Google Scholar
  57. Miller, M. A., W. Pfeiffer & T. Schwartz, 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010. New Orleans: 1–8.Google Scholar
  58. Moritz, C., K. McGuigan & L. Bernatchez, 2002. Conservation of freshwater fishes: integrating evolution and genetics with ecology. In Collares-Pereira, M. J., I. G. Cowx & M. M. Coelho (eds), Conservation of Freshwater Fishes: Options for the Future. Fishing News Books, Blackwell Science, Oxford: 293–310.Google Scholar
  59. Nelson, G. J., 1972. Cephalic sensory canals, pitlines, and the classification of esocoid fishes, with notes on galaxiids and other teleosts. American Museum Novitates 2492: 1–49.Google Scholar
  60. Olden, J. D., 2016. Challenges and opportunities for fish conservation in dam-impacted waters. In Closs, G. P., M. Krkosek & J. D. Olden (eds), Conservation of Freshwater Fishes. Cambridge University Press, Cambridge: 107–142.CrossRefGoogle Scholar
  61. Pekárik, L., J. Hajdú & J. Koščo, 2014. Identifying the key habitat characteristics of threatened European mudminnow (Umbra krameri, Walbaum 1792). Fundamental and Applied Limnology 184: 151–159.CrossRefGoogle Scholar
  62. Penck, A. & E. Brückner, 1909. Die Alpen im Eiszeitalter. Taunitz, Leipzig.Google Scholar
  63. Pickens, D. C., 2003. Genetic Evidence for a Population Bottleneck in the Olympic Mudminnow (Novumbra hubbsi). B.S. Degree, University of Puget Sound, Tacoma.Google Scholar
  64. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedPubMedCentralGoogle Scholar
  65. Rambaut, A., M. A. Suchard, D. Xie & A. J. Drummond, 2014. Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer. Accessed 1 Dec 2015.
  66. Raykov, V. St., M. Panayotova, P. Ivanova, I. Dobrovolov & V. Maximov, 2012. First record and allozyme data of European mudminnow Umbra krameri Walbaum, 1792 (Pisces: Umbridae) in the Black Sea. Comptes rendus de l’Académie bulgare des Sciences 65(1): 49–52.Google Scholar
  67. Sambrook, J., E. F. Fritseh & T. Maniatis, 1989. Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  68. Scotese, C. R., 2001. Atlas of Earth History, Volume 1, Paleogeography, PALEOMAP Project, Arlington.Google Scholar
  69. Sekulić, N., S. Marić, L. Galamboš, D. Radošević & J. Krpo-Ćetković, 2013. New distribution data and population structure of the European mudminnow Umbra krameri in Serbia and Bosnia and Herzegovina. Journal of Fish Biology 83: 659–666.CrossRefPubMedGoogle Scholar
  70. Shedko, S. V., I. L. Miroshnichenko & G. A. Nemkova, 2013. Phylogeny of Salmonids (Salmoniformes: Salmonidae) and its molecular dating: analysis of mtDNA data. Russian Journal of Genetics 49: 623–637.CrossRefGoogle Scholar
  71. Skog, A., L. A. Vøllestad, N. C. Stenseth, A. Kasumyan & K. S. Jakobsen, 2014. Circumpolar phylogeography of the northern pike (Esox lucius) and its relationship to the Amur pike (E. reichertii). Frontiers in Zoology 11: 67.Google Scholar
  72. Stepien C. A., J. Behrmann-Godel & L. Bernatchez, 2015. Evolutionary relationships, population genetics, and ecological and genomic adaptations of perch (Perca). In Couture, P., G. Pyle (eds), Biology of perch. CRC Press, Taylor and Francis Group, Boka Raton: 7–46.Google Scholar
  73. Szpiech, Z. A., M. Jakobsson & N. A. Rosenberg, 2008. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24: 2498–2504.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Takács, P., T. Erős, A. Specziár, P. Sály, Z. Vitál, Á. Ferincz, T. Molnár, Z. Szabolcsi, P. Bíró & E. Csoma, 2015. Population genetic patterns of threatened European Mudminnow (Umbra krameri Walbaum, 1792) in a fragmented landscape: implications for conservation management. PLoS ONE 10(9): e0138640.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.PubMedGoogle Scholar
  76. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The CLUSTAL_X windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Research 25: 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tiffney, B. H., 1985. The Eocene North Atlantic Land Bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum 66: 243–273.CrossRefGoogle Scholar
  79. Trombitsky, I., V. Lobcenco & A. Moshu, 2001. The European mudminnow, Umbra krameri, still populates the Dniester River in Moldova. Folia Zoologica 50: 159–160.Google Scholar
  80. Vähä, J. P., J. Erkinaro, E. Niemelä & C. R. Primmer, 2007. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Molecular Ecology 16: 2638–2654.CrossRefPubMedGoogle Scholar
  81. Van Oosterhout, C., W. F. D. Hutchinson, P. M. Wills & P. Shipley, 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.CrossRefGoogle Scholar
  82. Velkov, B., L. Pehlivanov & M. Vassilev, 2004. Umbra krameri (Pisces: Umbridae): a reinstated species for the Bulgarian ichthyofauna. Acta Zoologica Bulgarica 56: 233–235.Google Scholar
  83. Wakeley, J., 2000. The effects of subdivision on the genetic divergence of populations and species. Evolution 54: 1092–1101.CrossRefPubMedGoogle Scholar
  84. Wanzenböck, J., 1995. Current knowledge on the European mudminnow Umbra krameri Walbaum, 1792. Annalen des Naturhistorischen Museums in Wien 97B: 439–449.Google Scholar
  85. Wanzenböck, J., 2004. European mudminnow (Umbra krameri) in the Austrian floodplain of the River Danube–Conservation of an indicator species for endangered wetland ecosystems in Europe. In Akcakaya, H. R., M. A. Burgman, O. Kindvall, C. C. Wood, P. Sjögren-Gulve, J. S. Hatfield & M. A. McCarthy (eds), Species Conservation and Management. Oxford University Press, New York: 200–207.Google Scholar
  86. Wilson, M. V. H., D. B. Brinkman & A. G. Neuman, 1992. Cretaceous Esocoidei (Teleostei): early radiation of the pikes in North American fresh waters. Journal of Paleontology 66: 839–846.CrossRefGoogle Scholar
  87. Winkler, K. A. & S. Weiss, 2009. Nine new tetranucleotide microsatellite DNA markers for the European mudminnow Umbra krameri. Conservation Genetics 10: 1155–1157.CrossRefGoogle Scholar
  88. Yang, Z., 1993. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10: 1396–1401.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Saša Marić
    • 1
  • David Stanković
    • 2
    • 3
  • Josef Wanzenböck
    • 4
  • Radek Šanda
    • 5
  • Tibor Erős
    • 6
  • Péter Takács
    • 6
  • András Specziár
    • 6
  • Nenad Sekulić
    • 7
  • Doru Bănăduc
    • 8
  • Marko Ćaleta
    • 9
  • Ilya Trombitsky
    • 10
  • László Galambos
    • 11
  • Sándor Sipos
    • 12
  • Aleš Snoj
    • 2
  1. 1.Institute of Zoology, Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Animal Science, Biotechnical FacultyUniversity of LjubljanaDomžaleSlovenia
  3. 3.Department of Life SciencesUniversity of TriesteTriesteItaly
  4. 4.Research Institute for LimnologyUniversity of InnsbruckMondseeAustria
  5. 5.Department of ZoologyNational MuseumPrague 1Czech Republic
  6. 6.MTA Centre for Ecological ResearchBalaton Limnological InstituteTihanyHungary
  7. 7.Institute for Nature Conservation of SerbiaNovi BeogradSerbia
  8. 8.Faculty of SciencesLucian Blaga University of SibiuSibiuRomania
  9. 9.Faculty of Teacher EducationUniversity of ZagrebZagrebCroatia
  10. 10.Eco-TIRAS International Association of Dniester River KeepersChisinauMoldova
  11. 11.Institute for Nature Conservation of VojvodinaNovi SadSerbia
  12. 12.Department of Biology and Ecology, Faculty of ScienceUniversity of Novi SadNovi SadSerbia

Personalised recommendations