, Volume 790, Issue 1, pp 247–258 | Cite as

Anti-predatory effects of organic extracts of 10 common reef sponges from Zanzibar

  • S. B. Helber
  • N. J. de Voogd
  • C. A. Muhando
  • S. Rohde
  • P. J. Schupp
Primary Research Paper


Predation is a key factor influencing the distribution and community composition of sponges and other benthic organisms. The ability to produce deterrent secondary metabolites may partially explain the high abundances of sponges on coral reefs worldwide. Nonetheless, studies investigating sponge abundances and chemical ecology are rare, particularly in the Western Indian Ocean. Therefore, this study assessed whether predation is a key factor in structuring the sponge community on reefs around Zanzibar by testing whether chemical defence potential correlates with sponge abundance. Sponge biodiversity and abundances (surface area) were determined, and the palatability of the most abundant sponge species was tested in laboratory feeding assays with the spongivorous pufferfish Canthigaster solandri. Sponges were abundant on the reefs on Zanzibar accounting for 4.8 ± 3.8 and 7.5 ± 1.7% of the benthic cover at 5 m and at 10 m depth, respectively. In the feeding assay, three sponges deterred feeding by C. solandri. However, the presence of feeding deterrent compounds in sponges did not correlate with their abundance on the reef. Low predatory fish abundances likely resulted in a high prevalence of chemically undefended species. Thus, chemically undefended sponges dominate the reef at Bawe Island, Zanzibar, subjecting reef-building corals to a higher competitive pressure.


Chemical defence Deterrent Spongivory Zanzibar Phase shift Fish 



We would like to thank staff and students at the IMS in Zanzibar, the ZMT and the members of the environmental biochemistry group at the ICBM in Wilhelmshaven, University of Oldenburg. We greatly appreciate the field and diving assistance of NS Jiddawi, MS Shalli, FE Belshe, D Hoeijmakers, S Bröhl and U Pint. We would like to thank C Richter, M Wolff, JG Plass-Johnson and L Rix for insightful comments on the manuscript. Peter J Schupp and Stephanie B Helber acknowledge funding of the SUTAS project by the German Leibniz Association (WGL).


This study was funded by the German Leibniz Association (WGL) (Grant No. SAW-2013-ZMT-4).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

10750_2016_3036_MOESM1_ESM.tif (109.6 mb)
Supplemental Fig. 1: Pictures of all investigated sponge species. a: Haliclona atra; b: Pseudoceratina sp.; c: Tetrapocillon minor; d: Callyspongia aerizusa; e: Plakortis kenyensis; f: Paratetilla sp.; g: Callyspongia sp.; h: Haliclona fascigera; i: Scopalina hapalia; j: Biemna sp. Supplementary material 1 (TIFF 112236 kb)


  1. Amade, P., C. Charroin, C. Baby & J. Vacelet, 1987. Antimicrobial activities of marine sponges from the Mediterranean Sea. Marine Biology 94: 271–275.CrossRefGoogle Scholar
  2. Barnes, D. K. A., 1999. High diversity of tropical intertidal zone sponges in temperature, salinity and current extremes. African Journal of Ecology 37: 424–434.CrossRefGoogle Scholar
  3. Barnes, D. K. A. & J. J. Bell, 2002. Coastal sponge communities of the West Indian Ocean: morphological richness and diversity. African Journal of Ecology 40: 350–359.CrossRefGoogle Scholar
  4. Becerro, M. A., R. W. Thacker, X. Turon, M. J. Uriz, V. J. Paul, X. Turon-Maria & J. Uriz, 2003. Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia 135: 91–101.CrossRefPubMedGoogle Scholar
  5. Bell, J. J. & D. Smith, 2004. Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-east Sulawesi, Indonesia: richness and abundance. Journal of the Marine Biological Associaion of the United Kingdom 84: 581–591.CrossRefGoogle Scholar
  6. Bell, J. J., S. K. Davy, T. Jones, M. W. Taylor & N. S. Webster, 2013. Could some coral reefs become sponge reefs as our climate changes? Global Change Biology 19: 2613–2624.CrossRefPubMedGoogle Scholar
  7. Bellwood, D. R. & J. H. Choat, 1990. A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environmental Biology of Fishes 28: 189–214.CrossRefGoogle Scholar
  8. Bergman, K. C. & M. C. Öhman, 2001. Coral reef structure at Zanzibar Island, Tanzania. In Richmond, M. D. & J. Francis (eds), Proceedings of the 20th Anniversary Conference on Advances in Marine Science in Tanzania. Marine Science Development in Tanzania and Eastern Africa: 263–275.Google Scholar
  9. Bourjea, J., R. Nel, N. S. Jiddawi, M. S. Koonjul & G. Bianchi, 2008. Sea turtle bycatch in the West Indian Ocean: review, recommendations and research priorities. Western Indian Ocean Journal of Marine Science 7: 137–150.Google Scholar
  10. Bronstein, O. & Y. Loya, 2014. Echinoid community structure and rates of herbivory and bioerosion on exposed and sheltered reefs. Journal of Experimental Marine Biology and Ecology 456: 8–17.CrossRefGoogle Scholar
  11. Burns, E. & M. IIan, 2003. Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. II. Physical defense. Marine Ecology Progress Series 252: 115–123.CrossRefGoogle Scholar
  12. Burns, E., I. Ifrach, S. Carmeli, J. R. Pawlik & M. Ilan, 2003. Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. Chemical defense. Marine Ecology Progress Series 252: 105–114.CrossRefGoogle Scholar
  13. Cerrano, C., G. Bavestrello, M. Boyer, B. Calcinai, L. T. X. Lalamentik & M. Pansini, 2002. Psammobiontic sponges from the Bunaken Marine Park (North Sulawesi, Indonesia): interactions with sediments. Proceedings of the 9th International Coral Reef Symposium, Bali 1: 279–282.Google Scholar
  14. Chanas, B. & J. R. Pawlik, 1995. Defenses of Caribbean sponges against predatory reef fish. II. Spicules, tissue toughness and nutritional quality. Marine Ecology Progress Series 12: 183–194.Google Scholar
  15. Colvard, N. B. & P. J. Edmunds, 2011. Decadal-scale changes in abundance of non-scleractinian invertebrates on a Caribbean coral reef. Journal of Experimental Marine Biology and Ecology 397: 153–160.CrossRefGoogle Scholar
  16. Costantino, V., E. Fattorusso & A. Mangoni, 1993. Isolation of five-membered cyclitol glycolipids, crasserides: unique glycerides from the sponge Pseudoceratina crassa. Journal of Organic Chemistry 58: 186–191.CrossRefGoogle Scholar
  17. Cronin, G., N. Lindquist, M. E. Hay & W. Fenical, 1995. Effects of storage and extraction procedures on yields of lipophilic metabolites from the brown seaweeds Dictyota ciliolata and D. menstrualis. Marine Ecology Progress Series 119: 265–273.CrossRefGoogle Scholar
  18. Dai, M. H., Z. Q. Yin, F. F. Meng, Q. Liu & W. J. Cai, 2012. Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Current Opinion in Environmental Sustainability 4: 170–178.CrossRefGoogle Scholar
  19. de Goeij, J. M., D. van Oevelen, M. J. A. Vermeij, R. Osinga, J. J. Middelburg, A. F. P. M. de Goeij & W. Admiraal, 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342: 108–110.CrossRefPubMedGoogle Scholar
  20. de la Torre-Castro, M., J. S. Eklöf, P. Rönnbäck & M. Björk, 2008. Seagrass importance in food provisioning services: fish stomach content as a link between seagrass meadows and local fisheries. Western Indian Ocean Journal of Marine Sciences 7: 95–110.Google Scholar
  21. de Voogd, N. J., 2005. Indonesian sponges: biodiversity and mariculture potential. Dissertation, University of Amsterdam.Google Scholar
  22. de Voogd, N. J., L. E. Becking, B. W. Hoeksem & R. W. M. van Soest, 2004. Sponge interactions with spatial competitors in the Spermonde Archipelago. Bollettino dei Musei e Degli Istituti Biologici dell’Università di Genova 68: 253–261.Google Scholar
  23. de Voogd, N. J., D. F. R. Cleary, B. W. Hoeksema, A. Noor & R. W. M. van Soest, 2006. Sponge beta diversity in the Spermonde Archipelago, SW Sulawesi, Indonesia. Marine Ecology Progress Series 309: 131–142.CrossRefGoogle Scholar
  24. de Voogd, N. J., L. E. Becking & D. F. R. Cleary, 2009. Sponge community composition in the Derawan islands, NE Kalimantan, Indonesia. Marine Ecology Progress Series 396: 169–180.CrossRefGoogle Scholar
  25. Diaz, M. C. & K. Rützler, 2001. Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69: 535–546.Google Scholar
  26. Dunlap, M. & J. R. Pawlik, 1996. Video-monitored predation by Caribbean reef fishes on an array of mangrove and reef sponges. Marine Biology 126: 117–123.CrossRefGoogle Scholar
  27. Fabricius, K. E., 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin 50: 125–146.CrossRefPubMedGoogle Scholar
  28. Flórez, L. V., P. H. W. Biedermann, T. Engl & M. Kaltenpoth, 2015. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports 32: 904–936.CrossRefPubMedGoogle Scholar
  29. Freeman, C. J. & C. G. Easson, 2016. Sponge distribution and the presence of photosymbionts in Moorea, French Polynesia. PeerJ 4: e1816.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gemballa, S. & F. Schermutzki, 2004. Cytotoxic haplosclerid sponges preferred: a field study on the diet of the dotted sea slug Peltodoris atromaculata (Doridoidea: Nudibranchia). Marine Biology 144: 1213–1222.CrossRefGoogle Scholar
  31. Gullström, M., M. Bodin, P. G. Nilsson & M. C. Öhman, 2008. Seagrass structural complexity and landscape configuration as determinants of tropical fish assemblage composition. Marine Ecology Progress Series 363: 241–255.CrossRefGoogle Scholar
  32. Hay, M. E., 1991. Fish-seaweed interactions on coral reefs: effects of herbivorous fishes and adaptations of their prey. In Sale, P. F. (ed.), The Ecology of Fishes on Coral Reefs. Academic Press, San Diego: 96–119.CrossRefGoogle Scholar
  33. Hill, M. S. & A. L. Hill, 2002. Morphological plasticity in the tropical sponge Anthosigmella varians: responses to predators and wave energy. The Biological Bulletin 202: 86–95.CrossRefPubMedGoogle Scholar
  34. Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, et al., 2008. Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1742.CrossRefGoogle Scholar
  35. Hoey, A. S. & D. R. Bellwood, 2008. Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27: 37–47.CrossRefGoogle Scholar
  36. Holmes, K. E., 2000. Effects of eutrophication on bioeroding sponge communities with the description of new West Indian sponges, Cliona spp. (Porifera: Hadromerida: Clionidae). Invertebrate Biology 119: 125–138.CrossRefGoogle Scholar
  37. Ilan, M. & Y. Loya, 1988. Reproduction and settlement of the coral reef sponge Niphates sp. (Red Sea). Proceedings of the 6th International Coral Reef Symposium, Townsville 2: 745–749.Google Scholar
  38. Ilan, M. & Y. Loya, 1990. Sexual reproduction and settlement of the coral reef sponge Chalinula sp. from the Red Sea. Marine Biology 105: 25–31.CrossRefGoogle Scholar
  39. Jennings, S., E. M. Grandcourt & N. V. Polunin, 1995. The effects of fishing on the diversity, biomass and trophic structure of Seychelles’ reef fish communities. Coral Reefs 14: 225–235.CrossRefGoogle Scholar
  40. Kuguru, B. L., Y. D. Mgaya, M. C. Öhman & G. M. Wagner, 2004. The reef environment and competitive success in the Corallimorpharia. Marine Biology 145: 875–884.CrossRefGoogle Scholar
  41. León, Y. M. & K. A. Bjorndal, 2002. Selective feeding in the hawksbill turtle, an important predator in coral reef ecosystems. Marine Ecology Progress Series 245: 249–258.CrossRefGoogle Scholar
  42. Leong, W. & J. R. Pawlik, 2010a. Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Marine Ecology Progress Series 406: 71–78.CrossRefGoogle Scholar
  43. Leong, W. & J. R. Pawlik, 2010b. Fragments or propagules? Reproductive tradeoffs among Callyspongia spp. from Florida coral reefs. Oikos 119: 1417–1422.CrossRefGoogle Scholar
  44. Lesser, M. P., 2006. Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. Journal of Experimental Marine Biology and Ecology 328: 277–288.CrossRefGoogle Scholar
  45. Loh, T.-L. & J. R. Pawlik, 2014. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proceedings of the National Academy of Science 111: 4151–4156.CrossRefGoogle Scholar
  46. Loh, T.-L. & J. R. Pawlik, 2009. Bitten down to size: fish predation determines growth form of the Caribbean coral reef sponge Mycale laevis. Journal of Experimental Marine Biology and Ecology 374: 45–50.CrossRefGoogle Scholar
  47. Loh, T.-L., S. E. McMurray, T. P. Henkel, J. Vicente & J. R. Pawlik, 2015. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ 3: e901.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lokrantz, J., M. Nyström, A. V. Norström, C. Folke & J. E. Cinner, 2010. Impacts of artisanal fishing on key functional groups and the potential vulnerability of coral reefs. Environmental Conservation 36: 327–337.CrossRefGoogle Scholar
  49. McClanahan, T. R., 1997. Effects of fishing and reef structure on East African coral reefs. Proceedings of the 8th International Coral Reef Symposium, Smithsonian Tropical Research Institute, Balboa 2: 1533–1538.Google Scholar
  50. McClanahan, T. R., M. Ateweberhan, E. S. D. Darling, N. J. A. Graham & N. A. Muthiga, 2014. Biogeography and change among regional coral communities across the Western Indian Ocean. PLoS ONE 9: e93385.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Meroz, E. & M. Ilan, 1995. Cohabitation of a coral reef sponge and a colonial scyphozoan. Marine Biology 124: 453–459.CrossRefGoogle Scholar
  52. Mortimer, J. A. & M. Donnelly, 2008. Marine turtle specialist group 2007 IUCN Red List status assessment hawksbill turtle (Eretmochelys imbricata). IUCN, Marine Turtle Specialist Group, Gland.Google Scholar
  53. Moynihan, M. A., D. M. Baker & A. J. Mmochi, 2012. Isotopic and microbial indicators of sewage pollution from Stone Town, Zanzibar, Tanzania. Marine Pollution Bulletin 64: 1348–1355.CrossRefPubMedGoogle Scholar
  54. Muhando, C. A., 2009. Coral reef monitoring in Tanzania: an analysis of the last 20 years. Western Indian Ocean Journal of Marine Science 8: 203–214.Google Scholar
  55. Muhando, C. A. & F. Lanshammar, 2008. Ecological effects of the crown-of-thorns starfish removal programme on Chumbe Island Coral Park, Zanzibar, Tanzania. Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale 2: 1127–1131.Google Scholar
  56. Muhando, C. A. & M. S. Mohammed, 2002. Coral reef benthos and fisheries in Tanzania before and after the 1998 bleaching and mortality event. Western Indian Ocean Journal of Marine Science 1: 43–52.Google Scholar
  57. Muhando, C. A., B. L. Kuguru, G. M. Wagner, N. E. Mbije & M. C. Öhman, 2002. Environmental effects on the distribution of corallimorpharians in Tanzania. AMBIO: A Journal of the Human Environment 31: 558–561.CrossRefGoogle Scholar
  58. Mumby, P. J., 2009. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28: 761–773.CrossRefGoogle Scholar
  59. Muthiga, N., A. Costa, H. Motta, C. A. Muhando, R. Mwaipopo & M. Schleyer, 2008. Status of coral reefs in East Africa: Kenya, Tanzania, Mozambique and South Africa. In Wilkinson, C. (ed.), Status of Coral Reefs of the World. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville: 91–104.Google Scholar
  60. Norström, A. V., M. Nyström, J. Lokrantz & C. Folke, 2009. Alternative states on coral reefs: beyond coral macroalgal phase shifts. Marine Ecology Progress Series 376: 293–306.CrossRefGoogle Scholar
  61. Obura, D., 2012. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7(9): e45013.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Padilla, V. C. J., J. L. Carballo & M. L. Camacho, 2010. A qualitative assessment of sponge-feeding organisms from the Mexican Pacific coast. The Open Marine Biology Journal 4: 39–46.CrossRefGoogle Scholar
  63. Pawlik, J. R., 1998. Coral reef sponges: do predatory fishes affect their distribution? Limnology and Oceanography 43: 1396–1399.CrossRefGoogle Scholar
  64. Pawlik, J. R., 2011. The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. Bioscience 61: 888–898.CrossRefGoogle Scholar
  65. Pawlik, J. R., B. Chanas, R. J. Toonen & W. Fenical, 1995. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Marine Ecology Progress Series 127: 183–194.CrossRefGoogle Scholar
  66. Pawlik, J. R., T. P. Henkel, S. E. McMurray, S. López-Legentil, T.-L. Loh & S. Rohde, 2008. Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off. Marine Ecology Progress Series 368: 137–143.CrossRefGoogle Scholar
  67. Pawlik, J. R., S. E. McMurray, P. Erwin & S. Zea, 2015a. A review of evidence for food limitation of sponges on Caribbean reefs. Marine Ecology Progress Series 519: 265–283.CrossRefGoogle Scholar
  68. Pawlik, J. R., S. E. McMurray, P. Erwin & S. Zea, 2015b. No evidence for food limitation of Caribbean reef sponges: reply to Slattery & Lesser (2015). Marine Ecology Progress Series 527: 281–284.CrossRefGoogle Scholar
  69. Pawlik, J. R., D. E. Burkepile & R. V. Thurber, 2016. A vicious circle? Altered carbon and nutrient cycling may explain the low resilience of Caribbean coral reefs. Bioscience 66: biw047.CrossRefGoogle Scholar
  70. Pennings, S. C., S. R. Pablo, V. J. Paul & J. E. Duffy, 1994. Effects of sponge secondary metabolites in different diets on feeding by three groups of consumers. Journal of Experimental Marine Biology and Ecology 180: 137–149.CrossRefGoogle Scholar
  71. Perez, T., E. Wafo, M. Fourt & J. Vacelet, 2003. Marine sponges as biomonitor of polychlorobiphenyl contamination: concentration and fate of 24 congeners. Environmental Science & Technology 37: 2152–2158.CrossRefGoogle Scholar
  72. Powell, A. L., L. J. Hepburn, D. J. Smith & J. J. Bell, 2010. Patterns of sponge abundance across a gradient of habitat quality in the Wakatobi Marine National Park, Indonesia. The Open Marine Biology Journal 4: 31–38.CrossRefGoogle Scholar
  73. Powell, A., T. Jones, D. J. Smith, J. Jompa & J. J. Bell, 2015. Spongivory in the Wakatobi Marine National Park, Southeast Sulawesi, Indonesia. Pacific Science 69: 487–508.CrossRefGoogle Scholar
  74. Randall, J. E. & W. D. Hartman, 1968. Sponge-feeding fishes of the West Indies. Marine Biology 1: 216–225.CrossRefGoogle Scholar
  75. Rohde, S. & P. J. Schupp, 2011. Allocation of chemical and structural defenses in the sponge Melophlus sarasinorum. Journal of Experimental Marine Biology and Ecology 399: 76–83.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Rohde, S., S. Nietzer & P. J. Schupp, 2015. Prevalence and mechanisms of dynamic chemical defenses in tropical sponges. PLoS ONE 10: e0132236.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rohde, S., D. J. Gochfeld, S. Ankisetty, B. Avula, P. J. Schupp & M. Slattery, 2012. Spatial variability in secondary metabolites of the Indo-Pacific sponge Stylissa massa. Journal of Chemical Ecology 38: 463–475.CrossRefPubMedGoogle Scholar
  78. Rützler, K. & K. Muzik, 1993. Terpios hoshinota, a new cyanobacteriosponge threatening Pacific reefs. Scientia Marina 57: 395–403.Google Scholar
  79. Rützler, K., 2002. Impact of crustose clionid sponges on Caribbean reef corals. Acta Geologica Hispanica 37: 61–72.Google Scholar
  80. Safaeian, S., H. Hosseini, A. P. Asadolah & S. Farmohamadi, 2009. Antimicrobial activity of marine sponge extracts of offshore zone from Nay Band Bay, Iran. Journal de Mycologie Médicale 19: 11–16.CrossRefGoogle Scholar
  81. Sakemi, S., T. Higa, U. Anthoni & C. Christophersen, 1987. Antitumor cyclic peroxides from the sponge Plakortis lita. Tetrahedron 43: 263–268.CrossRefGoogle Scholar
  82. Schönberg, C. H. L., 2014. Self-cleaning surfaces in sponges. Marine Biodiversity 45: 623–624.CrossRefGoogle Scholar
  83. Shinn, E. A., G. W. Smith, J. M. Prospero, P. Betzer, M. L. Hayes, V. Garrison & R. T. Barber, 2000. African dust and the demise of Caribbean coral reefs. Geophysical Research Letters 27: 3029–3032.CrossRefGoogle Scholar
  84. Simister, R., M. W. Taylor, P. Tsai & N. Webster, 2012. Sponge-microbe associations survive high nutrients and temperatures. PLoS ONE 7: e0052220.CrossRefGoogle Scholar
  85. Sinko, J., J. Rajchard, Z. Balounova & L. Fikotova, 2012. Biologically active substances from water invertebrates: a review. Veterinární medicína 57: 177–184.Google Scholar
  86. Slattery, M. & M. P. Lesser, 2015. Trophic ecology of sponges from shallow to mesophotic depths (3 to 150 m): comment on Pawlik et al. (2015). Marine Ecology Progress Series 527: 275–279.CrossRefGoogle Scholar
  87. Sokolover, N. & M. Ilan, 2007. Assessing anti-predatory chemical defenses among ten eastern Mediterranean sponges. Journal of the Marine Biological Association of the United Kingdom 87: 1785–1790.CrossRefGoogle Scholar
  88. Su, J.-H., Y.-C. Chen, M. El-Shazly, Y.-C. Du, C.-W. Su, C.-W. Tsao, et al., 2013. Towards the small and the beautiful: a small dibromotyrosine derivative from Pseudoceratina sp. sponge exhibits potent apoptotic effect through targeting IKK/NFκB signaling pathway. Marine Drugs 11: 3168–3185.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Southwell, M. W., J. B. Weisz, C. S. Martens & N. Lindquist, 2008. In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnology and Oceanography 53: 986–996.CrossRefGoogle Scholar
  90. Thoms, C. & P. J. Schupp, 2008. Activated chemical defense in marine sponges – a case study on Aplysinella rhax. Journal of Chemical Ecology 34: 1242–1252.CrossRefPubMedGoogle Scholar
  91. Tsurumi, M. & H. M. Reiswig, 1997. Sexual versus asexual reproduction in an oviparous rope form sponge, Aplysina cauliformis (Porifera; Verongida). Invertebrate Reproduction & Development 32: 1–9.CrossRefGoogle Scholar
  92. Tyler, E. H. M., M. R. Speight, P. Henderson & A. Manica, 2009. Evidence for a depth refuge effect in artisanal coral reef fisheries. Biological Conservation 142: 652–667.CrossRefGoogle Scholar
  93. Vacelet, J. & P. Vasseur, 1977. Sponge distribution in coral reefs and related areas in the vicinity of Tuléar (Madagascar). Proceedings of the 3rd International Coral Reef Symposium, Miami 1: 113–117.Google Scholar
  94. Vicente, J., A. Stewart, R. van Wagoner, E. Elliott, A. Bourdelais & J. Wright, 2015. Monacyclinones, new angucyclinone metabolites isolated from Streptomyces sp. M7_15 associated with the Puerto Rican sponge Scopalina ruetzleri. Marine Drugs 13: 4682–4700.CrossRefPubMedPubMedCentralGoogle Scholar
  95. von Brandis, R. G., J. A. Mortimer, B. K. Reilly, R. W. M. van Soest & G. M. Branch, 2014. Taxonomic composition of the diet of hawksbill turtles (Eretmochelys imbricata) in the Republic of Seychelles. Western Indian Ocean Journal of Marine Science 13: 81–91.Google Scholar
  96. Waddell, B. & J. R. Pawlik, 2000. Defenses of Caribbean sponges against invertebrate predators. II. Assays with sea stars. Marine Ecology Progress Series 195: 133–144.CrossRefGoogle Scholar
  97. Walters, K. D. & J. R. Pawlik, 2005. Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges? Integrative and Comparative Biology 45: 352–358.CrossRefPubMedGoogle Scholar
  98. Ward-Paige, C. A., M. J. Risk, O. A. Sherwood & W. C. Jaap, 2005. Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Marine Pollution Bulletin 51: 570–579.CrossRefPubMedGoogle Scholar
  99. Wilkinson, C. R. & A. C. Cheshire, 1990. Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Marine Ecology Progress Series 67: 285–294.CrossRefGoogle Scholar
  100. Wulff, J. L., 1984. Sponge-mediated coral reef growth and rejuvenation. Coral Reefs 3: 157–163.CrossRefGoogle Scholar
  101. Wulff, J. L., 1995. Sponge-feeding by the Caribbean starfish Oreaster reticulatus. Marine Biology 123: 313–325.CrossRefGoogle Scholar
  102. Wulff, J. L., 1997a. Parrotfish predation on cryptic sponges of Caribbean coral reefs. Marine Biology 129: 41–52.CrossRefGoogle Scholar
  103. Wulff, J. L., 1997b. Causes and consequences of differences in sponge diversity and abundance between the Caribbean and Eastern Pacific of Panama. Proceedings of the 8th International Coral Reef Symposium, Panama City 2: 1377–1382.Google Scholar
  104. Wulff, J. L., 2000. Sponge predators may determine differences in sponge fauna between two sets of mangrove cays, Belize barrier reef. Atoll Research Bulletin 477: 249–262.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • S. B. Helber
    • 1
    • 2
  • N. J. de Voogd
    • 3
  • C. A. Muhando
    • 4
  • S. Rohde
    • 2
  • P. J. Schupp
    • 2
  1. 1.Leibniz Center for Tropical Marine Ecology (ZMT)BremenGermany
  2. 2.Institute for Chemistry and Biology of the Marine Environment (ICBM)WilhelmshavenGermany
  3. 3.Naturalis Biodiversity CenterLeidenThe Netherlands
  4. 4.Institute of Marine Sciences (IMS)ZanzibarTanzania

Personalised recommendations