, Volume 790, Issue 1, pp 1–12 | Cite as

The chalk hyporheic zone: a true ecotone?

  • Octavian Pacioglu
  • Lucian Pârvulescu
Review Paper


This review summarises the main ecotonal properties of chalk hyporheic zone (CHZ), using a holistic approach on both structure and functionality of this habitat. The corroborated results suggest that the CHZ represents a typically shallow habitat (approx. 40–50 cm deep), with a homogenous distribution of both fauna and chemistry between heads and tails of riffles (putative down and, respectively, upwelling zones). Despite being groundwater fed, the CHZ is equally influenced by surface waters, chemically and biologically. However, despite its shallowness, the CHZ plays a very important role in nutrients (re)cycling and in the energy flux towards river ecosystems, fuelling benthic food webs with surface-derived macronutrients and subsurface chemosynthetic C. Although groundwater variation influences strongly the river flow during winter, the effects on interstitial fauna dynamic are limited, suggesting the active role of CHZ played in the stochastic events of down/upward migration of fauna across habitats. Overall, the CHZ represents a confined, but critical habitat in the structure and functionality of chalk river ecosystems and fulfils most properties of a true ecotone.


Chalk hyporheic zone Ecotone properties Groundwater Chalk streams 



The lead author is grateful for guidance and useful comments during his PhD thesis to Anne Robertson and Peter Show (Roehampton University). OP was supported by a PhD scholarship offered by Roehampton University, London, UK.


  1. Abesser, C., P. Shand, D. Goodd & D. Peach, 2008. The role of alluvial valley deposits in groundwater surface water exchange in a Chalk river. In Abesser, C., T. Wagener & G. Nuetzmann (eds), Groundwater–Surface Water Interaction: Process Understanding, Conceptualization and Modelling. IAHS Press, Wallingford: 11–20.Google Scholar
  2. Allen, D. J., W. G. Darling, D. C. Gooddy, D. J. Lapworth, A. J. Newell, A. T. Williams, D. Allen & C. Abesser, 2010. Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK. Hydrogeology Journal 18: 1125–1141.CrossRefGoogle Scholar
  3. Baker, M. A., C. N. Dahm & H. M. Vallet, 2000. Anoxia, Anaerobic Metabolism and Biogeochemistry of Stream Water–Groundwater Interface. lx. Academic Press, London: 259–283.Google Scholar
  4. Borges, N., J. Spindler, G. Strauch & M. Rode, 2006. Temporal variation of hyporheic denitrification in a lowland agricultural drainage system. Geophysical Resources Abstract 8: 105–125.Google Scholar
  5. Berrie, A. D., 1992. The chalk stream environment. Hydrobiologia 248: 3–9.CrossRefGoogle Scholar
  6. Boulton, A. J., 2000. The subsurface macrofauna. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, San Diego: 120–137.Google Scholar
  7. Boulton, A. J., M. R. Scarsbrook, J. M. Quinn & G. P. Burrell, 1997. Land-use effects on the hyporheic ecology of five small streams near Hamnilton, New Zealand. New Zeeland Journal of Marine and Freshwater Research 31: 609–622.CrossRefGoogle Scholar
  8. Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.CrossRefGoogle Scholar
  9. Casey, H., 1981. Discharge and chemical changes in a chalk stream headwater affected by the outflow of a commercial water cress bed. Environmental Pollution 2: 373–385.Google Scholar
  10. Casey, H. & V. R. Newton, 1973. The chemical composition and flow of the River Frome and its main tributaries. Freshwater Biology 3: 317–333.CrossRefGoogle Scholar
  11. Collins, A. L. & D. E. Walling, 2007. Sources of fine sediment from the channel bed of lowland groundwater-fed catchments in the UK. Geomorphology 88: 20–138.CrossRefGoogle Scholar
  12. Collins, A. L., L. J. Williams, Y. S. Zhang, M. Marius, J. A. Dungait, D. J. Smallman, E. R. Dixon, A. Stringfellow, D. A. Sear, J. I. Jones & P. S. Naden, 2013. Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England. Science of the Total Environment 456–457: 181–195.CrossRefPubMedGoogle Scholar
  13. Danielopol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piestig (Austria). International Journal of Speleology 8: 23–51.CrossRefGoogle Scholar
  14. Davy-Bowker, J.-D., W. Sweeting, N. Wright, R. T. Clark & S. Arnott, 2006. The distribution of benthic and hyporheic macroinvertebrates from the heads and tails of riffles. Hydrobiologia 563: 109–123.CrossRefGoogle Scholar
  15. Dole-Olivier, M.-J., M. Creuzé des Châtelliers & P. Marmonier, 1993. Repeated gradients in subterranean landscape – example of stygofauna in the alluvial floodplain of the River Rhone (France). Fundamental and Applied Limnology 127: 451–471.Google Scholar
  16. Dole-Olivier, M.-J., P. Marmonier, M. Creuzé des Châtelliers & D. Martin, 1994. Interstitial fauna associated with the alluvial deposits of the Rhone River (France). In Danielopol, D., J. Gibert & J. Standford (eds), Groundwater Ecology. Academic Press, London: 140–176.Google Scholar
  17. Findlay, S., 1995. Importance of surface- subsurface exchange in stream ecosystems: the hyporheic zone. Limnology and Oceanogrphy 40: 159–164.CrossRefGoogle Scholar
  18. Flynn, N. J., T. Paddison & P. G. Whitehead, 2002. INCA modelling of the Lee system: strategies or the reduction of nitrogen loads. Hydrology and Earth System Science 6: 467–483.CrossRefGoogle Scholar
  19. Gledhill, T., 1973. Observations on the numbers of water mites (Hydrachnellae, Porohalacaridae) in Karaman/Chappuis samples from the interstitial habitats of riverine gravels in Britain. In Livre du cinquantenaire de l’Institut de Speologie “Emil Racovitza”, Bucuresti. Editura Academiei Republicii Socialiste Romania: 249–257.Google Scholar
  20. Gledhill, T., 1977. Numerical fluctuations of four species of subterranean amphipods during a five year period. Crustaceana Supplement 4: 144–152.Google Scholar
  21. Gledhill, T. & M. Ladle, 1969. Observations on the life history of the subterranean amphipod Niphargus aquilex aquilex Schiodte. Crustaceana 16: 51–56.CrossRefGoogle Scholar
  22. Grapes, T. R., C. Bradley & G. E. Petts, 2005. Dynamics of river-aquifer interactions along a chalk stream: the River Lambourn, UK. Hydrological Processes 19: 2035–2053.CrossRefGoogle Scholar
  23. Griffiths, J., A. Binley, N. Crook, J. Nutter, A. Young & S. Fletcher, 2006. Streamflow generation in the Pang and Lambourn catchments, Berkshire, UK. Journal of Hydrology 330: 71–83.CrossRefGoogle Scholar
  24. Hanrah, G., M. Gledhill, W. A. House & P. J. Worsfold, 2001. Phosphorous loading in the Frome catchment, UK: seasonal refinement of the Coefficient Modelling Approach. Journal of Environmental Quality 30: 1738–1746.CrossRefGoogle Scholar
  25. Harrison, S. S. & I. T. Harris, 2002. The effects of bank side management on chalk stream invertebrate communities. Freshwater Biology 47: 2233–2245.CrossRefGoogle Scholar
  26. Hartland, A., G. D. Fenwick & S. J. Bury, 2011. Tracing sewage-derived organic matter into a shallow groundwater food web using stable isotopes and fluorescence signatures. Marine and Freshwater Resources 62: 119–129.Google Scholar
  27. Harvey, J. W. & K. E. Bencala, 1993. The effect of streambed topography on surface–subsurface water exchange in mountain catchments. Water Resources 29: 89–98.CrossRefGoogle Scholar
  28. Headworth, H. G., T. Keating & M. J. Packman, 1982. Evidence for a shallow highly permeable zone in the Chalk of Hampshire, U.K. Journal of Hydrology 55: 93–112.CrossRefGoogle Scholar
  29. Hill, A. R. & D. J. Limbourner, 1998. Hyporheic zone chemistry and stream-subsurface exchange in two groundwater –fed streams. Canadian Journal of Fisheries and Aquatic Sciences 55: 495–506.CrossRefGoogle Scholar
  30. Howden, N. & T. Burt, 2009. Statistical analysis of nitrate concentrations from the River Frome and Piddle (Dorset, UK) for the period 1965–2007. Ecohydrology 2: 55–65.CrossRefGoogle Scholar
  31. Howden, N.J.K., H.S. Wheater, D.W. Peach & A.D. Butler, 2004. Hydrogeological controls on surface/groundwater interactions in a lowland permeable chalk catchment. In Webb, B., M. Acreman, C. Maksimovic, H. Smithers & C. Kirby (eds), Hydrology: science and practice for the 21st century. Proceedings of the British Hydrological Society International Conference, Imperial College, London: 113–122.Google Scholar
  32. Hynes, H. B. N., 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.CrossRefGoogle Scholar
  33. Iepure, S., S. Herrera, R. Rasines-Ladero & I. de Bustamante, 2013. Response of microcrustacean communities from the surface—groundwater interface to water contamination in urban river system of the Jarama basin (central Spain). Environmental Science and Pollution Research 20: 5813–5826.CrossRefPubMedGoogle Scholar
  34. Ireson, A. M., H. S. Wheater, A. P. Butler, S. A. Mathias, J. Finch & J. D. Cooper, 2006. Hydrological processes in the Chalk unsaturated zone: Insights from an intensive monitoring programme. Journal of Hydrology 330: 29–43.CrossRefGoogle Scholar
  35. Jarvie, H. P., M. D. Jurgens, R. J. Williams, C. Neal, J. J. L. Davies, C. Barrett & J. White, 2005. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. Journal of Hydrology 301: 51–74.CrossRefGoogle Scholar
  36. Jones, J. B., S. G. Fisher & N. B. Grimm, 1995. Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76: 942–952.CrossRefGoogle Scholar
  37. Jones, J. I., I. Growns, A. Arnold, S. McCall & M. Bowes, 2015. The effects of increased flow and fine sediment on hyporheic invertebrates and nutrients in stream mesocosms. Freshwater Biology 60: 813–826.CrossRefGoogle Scholar
  38. Lapworth, D. J., D. C. Gooddy, D. Allen & G. H. Old, 2009. Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter. Journal of Geophysical Research 114: G3.CrossRefGoogle Scholar
  39. Lapworth, D. J., D. C. Goody & H. P. Jarvie, 2011. Understanding phosphorous mobility and bioavailability in the hyporheic zone of a chalk stream. Water, Air and Soil Pollution 213: 218–236.Google Scholar
  40. Marmstrong, S. & F. Barlocher, 1989. Adsorption and release of amino acids from epilithic biofilms in streams. Freshwater Biology 22: 153–159.CrossRefGoogle Scholar
  41. Maurice, L. D., T. C. Atkinson, J. A. Barker, J. P. Bloomfield, A. R. Farrant & A. T. Wiliams, 2006. Karstic behaviour of groundwater in the English Chalk. Journal of Hydrology 330: 63–70.CrossRefGoogle Scholar
  42. Malard, F., S. Plenet & J. Gibert, 1996. The use of invertebrates in ground water monitoring: a rising research field. Groundwater Monitoring Research 16: 103–113.CrossRefGoogle Scholar
  43. Malard, F., K. Tockner, M.-J. Dole-Olivier & J. V. Ward, 2002. A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshwater Biology 47: 621–640.CrossRefGoogle Scholar
  44. Motas, C., 1962. Procédé des sondages phréatiques. Division du domaine souterrain. Classification écologique des animaux souterrains—Le psammon. Acta Museum Macedonici Science Naturale Skopje 8: 135–173.Google Scholar
  45. McInerney, C. E., L. Maurice, A. Robertson, L. R. F. D. Knight, J. Arnscheidt, T. Mathers, S. Matthijs, K. Eriksson, G. S. Proudlove & B. Hänfling, 2014. The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Molecular Ecology 23: 1153–1166.CrossRefPubMedGoogle Scholar
  46. Mulholand, P., E. Marzolf, J. R. Webster, D. R. Hart & S. P. Hendricks, 1997. Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnology and Oceanography 42: 443–451.CrossRefGoogle Scholar
  47. Nogaro, G., T. Datry, F. Mermillon-Blondin, S. Descloux & B. Montuelle, 2010. Influence of streambed sediment clogging on microbial processes in the hyporheic zone. Freshwater Biology 55: 1288–1302.CrossRefGoogle Scholar
  48. Pacioglu, O., 2010. Ecology of the hyporheic zone: a review. Cave and Karst Science 3: 69–76.Google Scholar
  49. Pacioglu, O., 2011. The effect of diffuse nitrate pollution and land use on hyporheic habitats in lowland English chalk rivers. PhD thesis, University of Roehampton, UK.Google Scholar
  50. Pacioglu, O., P. Shaw & A. Robertson, 2012. Patch scale response of hyporheic invertebrates to fine sediment removal in two chalk rivers. Fundamental and Applied Limnology 4: 283–288.CrossRefGoogle Scholar
  51. Pacioglu, O., O. T. Moldovan, P. Shaw & A. Robertson, 2016. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use. Environmental Science and Pollution Research 23: 4741.CrossRefPubMedGoogle Scholar
  52. Pretty, J. L., A. G. Hilldrew & M. Trimmer, 2006. Nutrient dynamics in relation to surface-groundwater hydrological exchange in a groundwater fed chalk stream. Journal of Hydrology 330: 84–100.CrossRefGoogle Scholar
  53. Riley, W. D., M. G. Pawson, V. Quayle & M. J. Ives, 2009. The effects of stream canopy management on macroinvertebrate communities and juvenile salmonid production in a chalk stream. Fisheries Management and Ecology 16: 100–111.CrossRefGoogle Scholar
  54. Sanders, I. A., C. M. Heppel, J. A. Cotton, G. Wharton, A. G. Hildrew, E. J. Flowers & M. Trimmer, 2007. Emission of methane from chalk streams has potential implications for agricultural practices. Freshwater Biology 52: 1176–1186.CrossRefGoogle Scholar
  55. Sear, D. A., P. D. Armitage & F. H. Dawson, 1999. Groundwater dominated rivers. Hydrological Processes 13: 255–276.CrossRefGoogle Scholar
  56. Shand, P., W.M. Edmunds, S. Wagsta & R. Flavin, 1995. The application of hydrogeochemical data and maps for environmental interpretation in upland Britain. British Geological Survey Technical Report WD194/57, Natural Environment Research Council, Swindon, UK.Google Scholar
  57. Snook, D. & P. G. Whitehead, 2004. Water quality and ecology of the River Lee: mass balance and a review of temporal and spatial data. Hydrology and Earth System Science 8: 630–650.CrossRefGoogle Scholar
  58. Stanford, J. A. & J. V. Ward, 1993. An Ecosystem Perspective of Alluvial Rivers: connectivity and the Hyporheic Corridor. Freshwater Science 12: 48–56.Google Scholar
  59. Stein, H., C. Kellermann, S. I. Schmid, H. Brielmann, C. Steube, S. E. Berkhoff, A. Fuchs, H. Jurgen, T. B. Hahn & C. Griebler, 2010. The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. Journal of Environmental Monitoring 12: 242–254.CrossRefPubMedGoogle Scholar
  60. Stubbington, R., A. J. Boulton, S. Little & P. J. Wood, 2015. Changes in invertebrate assemblage composition in benthic and hyporheic zones during a severe supraseasonal drought. Freshwater Science 34: 344–354.CrossRefGoogle Scholar
  61. Strauss, E. A. & G. A. Lamberti, 2000. Effect of dissolved organic carbon quality on microbial decomposition and nitrification rates in stream sediments. Freshwater Biology 47: 1854–1859.Google Scholar
  62. Tod, S. & J. M. Schmid-Araya, 2009. Meiofauna versus macrofauna: secondary production of invertebrates in a lowand chalk stream. Limnology and Oceanography 54: 450–456.CrossRefGoogle Scholar
  63. Trimmer, M., I. A. Sanders & C. M. Heppel, 2009a. Carbon and nitrogen cycling in a vegetated lowland chalk river impacted by sediment. Hydrological Processes 23: 2225–2238.CrossRefGoogle Scholar
  64. Trimmer, M., A. Hildrew, G. Jackson, C. Michelle, J. Pretty & J. Grey, 2009b. Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web. Limnology and Oceanography 54: 1541–1547.CrossRefGoogle Scholar
  65. Trimmer, M., J. Grey, C. Heppell, A. G. Hildrew, K. Lansdown, H. Stahl & G. Yvon-Durocher, 2012. River bed carbon and nitrogen cycling: State of play and some new directions. Science of the Total Environment 434: 143–158.CrossRefPubMedGoogle Scholar
  66. Ward, J.V., N.J. Voelz & P. Marmonier, 1992. Groundwater faunas at riverine sites receiving treated sewage effluent. In Stanford, J.A. & J.J. Simons JJ (eds), Proceedings of the first international conference on ground water ecology. AWRA, Bethesda, MD: 351–364.Google Scholar
  67. Wheater, H. S., D. Peach & A. Binley, 2007. Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR). Hydrology and Earth System Sciences Discussions, European Geosciences Union 11: 108–124.CrossRefGoogle Scholar
  68. Williams, D. D., 1993. Nutrient and flow vector dynamics at the hyporheic/groundwater interface and their effects on the interstitial fauna. Hydrobiologia 251: 185–198.CrossRefGoogle Scholar
  69. Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 233–256.CrossRefGoogle Scholar
  70. Williams, D. D., C. M. Febria & J. C. Y. Wong, 2010. Ecotonal and other properties of the Hyporheic Zone. Fundamental and Applied Limnology 176: 349–364.CrossRefGoogle Scholar
  71. Wood, P. J. & P. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmantal Management 21: 203–217.CrossRefGoogle Scholar
  72. Wood, P. J., A. J. Boulton, S. Little & R. Stubbington, 2010. Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions? Fundamental and Applied Limnology 176: 377–390.CrossRefGoogle Scholar
  73. Wright, J. F., 1992. Spatial and temporal occurrence of invertebrates in a chalk stream, Berkshire, England. Hydrobiologia 248: 11–30.CrossRefGoogle Scholar
  74. Wright, J. F. & K. L. Symes, 1999. A nine year study of the macroinvertebrate fauna of a chalk stream. Hydrological Processes 13: 371–385.CrossRefGoogle Scholar
  75. Wright, J. F., R. T. Clarke, R. J. M. Gunn, N. T. Kneebone & J. Davy-Bowker, 2004. Impact of major changes in flow regime on the macroinvertebrate assemblages of four chalk stream sites, 1997–2001. River Research and Applications 20: 775–794.CrossRefGoogle Scholar
  76. Wriedt, G., J. Spindler, T. Neef, R. Meisner & M. Rode, 2007. Groundwater dynamic and channel activity as major controls of in stream nitrate concentration in a lowland catchment system? Journal of Hydrology 330: 154–168.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for Research in EcologyRoehampton UniversityLondonUK
  2. 2.Department of Biology- Chemistry, Faculty of Chemistry, Biology, GeographyWest University of TimisoaraTimisoaraRomania

Personalised recommendations