, Volume 790, Issue 1, pp 213–223 | Cite as

Role of predation in biological communities in naturally eutrophic sub-Arctic Lake Mývatn, Iceland

  • Miguel Cañedo-ArgüellesEmail author
  • Serena Sgarzi
  • Ignasi Arranz
  • Xavier D. Quintana
  • Zeynep Ersoy
  • Frank Landkildehus
  • Torben L. Lauridsen
  • Erik Jeppesen
  • Sandra BrucetEmail author
Primary Research Paper


Effects of fish predation on consumers tend to be particularly strong in oligotrophic Arctic and sub-Arctic lakes. However, it remains unclear whether the fish influence the trophic structure and dynamics of naturally eutrophic lakes in these cold environments with simple food web structures. To study this, we conducted a 3-month in situ-controlled experiment in sub-Arctic Lake Mývatn, Iceland. We used the planktivorous fish three-spined sticklebacks (Gasterosteus aculeatus) as the main top predator. The cladocerans Eurycercus lamellatus and Acroperus harpae were significantly associated with fishless enclosures, whereas the rotifers Polyarthra sp. and Filinia terminalis were significantly associated with the fish enclosures. Fish predation led to a significant increase in phytoplankton biomass and a reduction in the zooplankton:phytoplankton biomass ratio, the mean zooplankton length and cladoceran mean biomass. Fish effects might have been stronger if a bloom of Anabaena in August had not overridden potential cascading effects. We argue that both top-down and bottom-up forces are important for structuring the communities in the lake. Our results suggest that Arctic and sub-Arctic lakes may undergo important changes in trophic dynamics if they get warmer and more nutrient rich as expected with the global climate change.


Arctic lakes Trophic cascade Predator control Resource control Anabaena Fish predation Climate change 



We would like to thank Arnie Einarsson for his constant advice and assistance during fieldwork and for providing useful comments on this manuscript. We also want to thank the Mývatn Research Station (Iceland) for providing us with workspace and facilities to conduct this study. We would like to thank Elisabeth Badosa, Sergi Carrasco, Mariona Munné, Gisela Solà and Beatriz Tintoré for their hard work in the field and the laboratory. This project was supported by the Carlsberg Foundation (Project 2013_01_0535) and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 ( MC was supported by the People Program (Marie Curie Actions) of the Seventh Framework Program of the European Union (FP7/2007–2013) under grant agreement no. 600388 of REA (TECNIOspring Program) and the Agency for Competitiveness and Business of the Government of Catalonia, ACCIÓ. SB was supported by the Marie Curie Intra European Fellowship no. 330249 (CLIMBING) and by the project DFG, Me 1686/7-1. XQ’s contribution was supported by grants from the Spanish “Ministerio de Ciencia e Innovación” (CGL2011-23907) and the Generalitat de Catalunya (Ref. 2014 SGR 484).We thank Anne Mette Poulsen for valuable editorial comments.

Supplementary material

10750_2016_3031_MOESM1_ESM.xlsx (48 kb)
Supplementary material 1 (XLSX 47 kb)


  1. Adalsteinsson, H., 1979. Size and food of Arctic char Salvelinus alpinus and stickleback Gasterosteus aculeatus in Lake Mývatn. Oikos JSTOR 32: 228–231.CrossRefGoogle Scholar
  2. Allen, M. B. & D. I. Arnon, 1955. Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiology 30: 366.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson, R. S., 1971. Crustacean plankton of 146 alpine and subalpine lakes and ponds in western Canada. Journal of the Fisheries Board of Canada 28: 311–321.CrossRefGoogle Scholar
  4. Anderson, R. S., 1972. Zooplankton composition and change in an alpine lake. Verhandlungen der Internationale Vereinigung der Limnologie 18: 264–268.Google Scholar
  5. Andersen, T., P. S. Cranston, & J. H. Epler (eds), 2013. Chironomidae of the Holarctic Region: keys and Diagnoses. In Part 1 - Larvae. Insect Systematics and Evolution Supplements. Entomological Society of Lund, Sweden, pp 573Google Scholar
  6. Bartrons, M., Á. Einarsson, R. L. G. Nobre, C. M. Herren, K. C. Webert, S. Brucet, S. R. Ólafsdóttir & A. R. Ives, 2015. Spatial patterns reveal strong abiotic and biotic drivers of zooplankton community composition in Lake Mývatn, Iceland. Ecosphere 6: 1–20.CrossRefGoogle Scholar
  7. Bates, D., M. Mächler, B. Bolker, & S. Walker, 2014. Fitting linear mixed-effects models using lme4. arXiv preprint. arXiv:1406.5823.
  8. Benjamini, Y. & Y. Hochberg, 2000. On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25: 60–83.CrossRefGoogle Scholar
  9. Benjamini, Y. & D. Yekutieli, 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29: 1165–1188.CrossRefGoogle Scholar
  10. Bottrell, H. H., 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  11. Brett, M. T. & C. R. Goldman, 1996. A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Sciences 93: 7723–7726.CrossRefGoogle Scholar
  12. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  13. Brucet, S., D. Boix, L. W. Nathansen, X. D. Quintana, E. Jensen, D. Balayla, M. Meerhoff & E. Jeppesen, 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change. PLoS ONE 7: e30877.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cheung, W. W. L., J. L. Sarmiento, J. Dunne, T. L. Frölicher, V. W. Y. Lam, M. L. D. Palomares, R. Watson & D. Pauly, 2013. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change 3: 254–258.CrossRefGoogle Scholar
  15. Christoffersen, K. S., S. L. Amsinck, F. Landkildehus, T. L. Lauridsen & E. Jeppesen, 2008. Lake flora and fauna in relation to ice-melt, water temperature and chemistry at Zackenberg. Advances in Ecological Research 40: 371–389.CrossRefGoogle Scholar
  16. De Cáceres, M., P. Legendre & M. Moretti, 2010. Improving indicator species analysis by combining groups of sites. Oikos 119: 1674–1684.CrossRefGoogle Scholar
  17. de Winter, J. C. F., 2013. Using the Student’s t-test with extremely small sample sizes. Practical Assessment, Research & Evaluation 18: 1–12.Google Scholar
  18. DeMott, W. R., 1989. The role of competition in zooplankton succession. In Sommer, U. (ed.), Plankton Ecology. Springer, Berlin: 195–252.CrossRefGoogle Scholar
  19. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  20. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefGoogle Scholar
  21. Einarsson, A., 2010. Fæðuvefur Mývatns. Náttúrufræðingurinn 79: 57–67.Google Scholar
  22. Einarsson, Á., G. Stefánsdóttir, H. Jóhannesson, J. S. Ólafsson, G. M. Gíslason, I. Wakana, G. Gudbergsson & A. Gardarsson, 2004. The ecology of Lake Myvatn and the River Laxá: variation in space and time. Aquatic Ecology 38: 317–348.CrossRefGoogle Scholar
  23. Emmrich, M., S. Pédron, S. Brucet, I. J. Winfield, E. Jeppesen, P. Volta, C. Argillier, T. L. Lauridsen, K. Holmgren, T. Hesthagen & T. Mehner, 2014. Geographical patterns in the body-size structure of European lake fish assemblages along abiotic and biotic gradients. Journal of Biogeography 41: 2221–2233.CrossRefGoogle Scholar
  24. Ger, K. A., P. Urrutia-Cordero, P. C. Frost & L.-A. Hansson, 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54: 128–144.CrossRefPubMedGoogle Scholar
  25. Gislason, G. M., A. Gudmundsson & A. Einarsson, 1998. Population densities of the three-spined stickleback (Gasterosteus aculeatus L.) in a shallow lake. Verhandlungen der Internationale Vereinigung der Limnologie 26: 2244–2250.Google Scholar
  26. Gliwicz, Z. M., O. Kinne, & W. Lampert, 2003. Between Hazards of Starvation and Risk of Predation: the Ecology of offshore Animals. International Ecology Institute Oldendorf/Luhe.Google Scholar
  27. González-Bergonzoni, I., F. Landkildehus, M. Meerhoff, T. L. Lauridsen, K. Özkan, T. A. Davidson, N. Mazzeo & E. Jeppesen, 2014. Fish determine macroinvertebrate food webs and assemblage structure in Greenland subarctic streams. Freshwater Biology 59: 1830–1842.CrossRefGoogle Scholar
  28. Hobbie, J. E. 1984. Polar limnology. In Taub, F. B. (ed) Lakes and Rivers. Ecosystems of the World. vol. 23, pp 63–104. Amsterdam: Elsevier.Google Scholar
  29. Hobbie, J. E., B. J. Peterson, N. Bettez, L. Deegan, W. J. O’Brien, G. W. Kling, G. W. Kipphut, W. B. Bowden & A. E. Hershey, 1999. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Research 18: 207–214.CrossRefGoogle Scholar
  30. Hobson, K. A. & H. E. Welch, 1995. Cannibalism and trophic structure in a high Arctic lake: insights from stable-isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 52: 1195–1201.CrossRefGoogle Scholar
  31. Ives, A. R., Á. Einarsson, V. A. A. Jansen & A. Gardarsson, 2008. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452: 84–87.CrossRefPubMedGoogle Scholar
  32. Jeppesen, E., T. Lauridsen, S. F. Mitchell & C. W. Burns, 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand Journal of Marine and Freshwater Research 31: 163–173.CrossRefGoogle Scholar
  33. Jeppesen, E., K. Christoffersen, F. Landkildehus, T. Lauridsen, S. L. Amsinck, F. Riget & M. Søndergaard, 2001. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442: 329–337.CrossRefGoogle Scholar
  34. Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, D. O. Hessen, M. Søndergaard, T. Lauridsen, P. Brettum & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6: 313–325.CrossRefGoogle Scholar
  35. Jeppesen, E., T. Mehner, I. J. Winfield, K. Kangur, J. Sarvala, D. Gerdeaux, M. Rask, H. J. Malmquist, K. Holmgren & P. Volta, 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 1–39.CrossRefGoogle Scholar
  36. Jónasson, P. M., 1979. Ecology of eutrophic, subarctic Lake Myvatn and the River Laxa (Iceland): introduction. Oikos 32: 1–308.Google Scholar
  37. Jónasson, P. M., & H. Adalsteinsson, 1979. Phytoplankton Production in Shallow Eutrophic Lake Mývatn, Iceland. Oikos 32(1/2): 113–138.Google Scholar
  38. Jónsson, E., A. Gardarsson & G. Gíslason, 1986. A new window trap used in the assessment of the flight periods of Chironomidae and Simuliidae (Diptera). Freshwater Biology 16: 711–719.CrossRefGoogle Scholar
  39. Knapp, R. A., K. R. Matthews & O. Sarnelle, 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecological monographs Eco Soc America 71: 401–421.CrossRefGoogle Scholar
  40. Leibold, M. A., 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. American Naturalist 134: 922–949.CrossRefGoogle Scholar
  41. Lin, S.-J., L.-J. He, P.-S. Huang & B.-P. Han, 2005. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton [J]. Ecologic Science 1: 2.Google Scholar
  42. Malley, D. F., 1989. Range of Variation in Estimates of Dry Weight for Planktonic Crustacea and Rotifera From Temperate North American Lakes: Canadian technical report of fisheries and aquatic sciences, no. 1666. Winnipeg : Fisheries and Oceans, Canada, p 49.Google Scholar
  43. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds.), A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell, Oxford: 228–265.Google Scholar
  44. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.CrossRefGoogle Scholar
  45. Michelutti, N., A. P. Wolfe, R. D. Vinebrooke, B. Rivard & J. P. Briner, 2005. Recent primary production increases in arctic lakes. Geophysical Research Letters 32(19): L19715.CrossRefGoogle Scholar
  46. Millet, A., B. K. Kristjánsson, Á. Einarsson & K. Räsänen, 2013. Spatial phenotypic and genetic structure of threespine stickleback (Gasterosteus aculeatus) in a heterogeneous natural system, Lake Mývatn, Iceland. Ecology and Evolution 3: 3219–3232.PubMedPubMedCentralGoogle Scholar
  47. Müller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.CrossRefPubMedGoogle Scholar
  48. Murphy, J. & J. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  49. Narum, S. R., 2006. Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation Genetics 7: 783–787.CrossRefGoogle Scholar
  50. O’Brien, W. J., 1975. Some aspects of the limnology of the ponds and lakes of the Noatak drainage basin, Alaska. Verhandlungen der Internationale Vereinigund der Limnologie 19: 472–479.Google Scholar
  51. Ólafsson, J., 1979. Physical characteristics of lake Mývatn and river Laxá. Oikos 32: 38–66.CrossRefGoogle Scholar
  52. R Core Team. 2015. R: A language and environment for statistical computing. - R Foundation for Statistical Computing.Google Scholar
  53. Rigler, F. H., 1975. The Char Lake project, an introduction to limnology in the Canadian Arctic. In: Cameron, T. W. M., & L. W. Billingsley (eds), Energy flow–it’s biological dimensions, A summary of the IBP in Canada 1964–1974. Royal Society of Canada, Ottawa, pp 171–198Google Scholar
  54. Rist, S., 1979. Ecology of Eutrophic Subarctic, Lake Mývatn and the River Laxá. Oikos 32(1/2):67–81Google Scholar
  55. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Archiv für Hydrobiologie 8: 1–76.Google Scholar
  56. Sarnelle, O., 1992. Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73(2): 551–560.CrossRefGoogle Scholar
  57. Solorzano, L. & J. H. Sharp, 1980. Determination of total dissolved nitrogen in natural waters. Limnology and Oceanography 25: 751–754.CrossRefGoogle Scholar
  58. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106(4): 433–471.Google Scholar
  59. Stross, R. G., M. C. Miller & R. J. Daley, 1980. Zooplankton: Communities, Life Cycles and Production. In Hobbie, J. E. (ed.), Limnology of tundra ponds, Barrow, Alaska. Dowden Hutchinson & Ross, Strousburg: 251–296.Google Scholar
  60. Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.CrossRefGoogle Scholar
  61. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera. Invertébrés d'eau douce: systématique, biologie, écologie. vol. 15. Paris: CNRS éditions, 2000. 588 pp.Google Scholar
  62. Throndsen, J., 1995. Estimating cell numbers. Manual on harmful marine microalgae. IOC Manuals and Guides UNESCO Paris 33: 63–80.Google Scholar
  63. Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnology and Oceanography 23: 1238–1245.CrossRefGoogle Scholar
  64. Winter, B., 2013. Linear models and linear mixed effects models in R with linguistic applications. arXiv preprint. arXiv:1308.5499.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Aquatic Ecology Group, BETA Tecnio CentreUniversity of Vic - Central University of CataloniaVicSpain
  2. 2.Freshwater Ecology and Management (F.E.M.) Research Group, Departament d’EcologiaUniversitat BarcelonaBarcelonaSpain
  3. 3.GRECO, Institute of Aquatic EcologyUniversity of GironaGironaSpain
  4. 4.Department of BioscienceAarhus UniversitySilkeborgDenmark
  5. 5.Arctic Research CentreAarhus UniversityAarhusDenmark
  6. 6.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  7. 7.Catalan Institution for Research and Advanced Studies ICREABarcelonaSpain

Personalised recommendations