, Volume 788, Issue 1, pp 319–343 | Cite as

Hybridization and genetic introgression patterns between two South American catfish along their sympatric distribution range

  • Fernanda Dotti do Prado
  • Raquel Fernandez-Cebrián
  • Diogo Teruo Hashimoto
  • José Augusto Senhorini
  • Fausto Foresti
  • Paulino Martínez
  • Fábio Porto-Foresti
Primary Research Paper


The presence of introgressive hybridization in the wild, especially that resulting from human interference, can have negative impacts on biodiversity. Genetic tools provide essential information for species and hybrid identification, facilitating the conservation of natural resources. Here, we tested a set of markers to precisely elucidate introgressive hybridization between Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum, two South American catfishes. New microsatellites showed high interspecific genetic divergence, and simulated data demonstrated the high power of STRUCTURE and NEWHYBRIDS for hybrid identification and classification, especially when all 11 nuclear markers were used. The investigation of real populations suggested that natural hybridization is rare. Otherwise, different hybridization scenarios were observed in two wild populations: one involving advanced backcrosses and the other involving high admixture. Our data represent the first detailed evaluation of genetic introgression between these species in Parana and Paraguay Basins and suggest that genetic contamination is occurring through F1 hybrids from aquaculture facilities. The results also provide a useful set of markers for monitoring escapees to aid in the conservation of the wild population and sustainable aquaculture. Additionally, species genotypic data are freely available to be used in the future as “parental species reference” in Bayesian methods assignments.


Pimelodidae Pseudoplatystoma Bayesian Microsatellites Genetic contamination 



This work was supported by grants from the Fundacão de Amparo à Pesquisa do Estado de SãoPaulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant Numbers 2009/18326-4 and 477703/2011-9, respectively).

Supplementary material

10750_2016_3010_MOESM1_ESM.docx (78 kb)
Supplementary material 1 (DOCX 77 kb)


  1. Abbott, R., D. Albach, S. Ansell, J. W. Arntzen, J. W. Baird, N. Bierne & J. Boughman, 2013. Hybridization and speciation. Journal of Evolutionary Biology 26: 229–246.CrossRefPubMedGoogle Scholar
  2. Aboim, M. A., J. Mavárez, L. Bernatchez & M. M. Coelho, 2010. Introgressive hybridization between two Iberian endemic cyprinid fish: a comparison between two independent hybrid zones. Journal of Evolutionary Biology 23: 817–828.CrossRefPubMedGoogle Scholar
  3. Allendorf, F. W., P. A. Hohenlohe & G. Luikart, 2010. Genomics and the future of conservation genetics. Nature 11: 697–709.Google Scholar
  4. Allendorf, F. W., R. F. Leary, N. P. Hitt, K. L. Knudsen, L. L. Lundquist & P. Spruell, 2004. Intercrosses and the U.S. Endangered Species Act: should Hybridized Populations be Included as Westslope Cutthroat Trout? Conservation Biology 18: 1203–1213.CrossRefGoogle Scholar
  5. Anderson, E. & E. A. Thompson, 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160: 1217–1229.PubMedPubMedCentralGoogle Scholar
  6. Arnold, M. L., M. R. Bulger, J. M. Burke, A. L. Hempel & J. H. Williams, 1999. Natural hybridization: how low can you go and still be important? Ecology 80: 371–381.CrossRefGoogle Scholar
  7. Barton, N. H., 2001. The role of hybridization in evolution. Molecular Ecology 10: 551–568.CrossRefPubMedGoogle Scholar
  8. Bignotto, T. S., A. J. Prioli, S. M. A. P. Prioli, T. C. Maniglia, T. A. Boni, L. C. Lucio, V. N. Gomes, R. A. Prioli, A. V. Oliveira, H. F. Julio & L. M. Prioli, 2009. Genetic divergence between Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum (Siluriformes: pimelodidae) in the Parana River basin. Brazilian Journal of Biology 69: 681–689.CrossRefGoogle Scholar
  9. Boecklen, W. J. & D. J. Howard, 1997. Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78: 2611–2616.CrossRefGoogle Scholar
  10. Bohling, J. H., J. R. Adams & L. P. Waits, 2013. Evaluating the ability of Bayesian clustering methods to detect hybridization and introgression using an empirical red wolf data set. Molecular Ecology 22: 74–86.CrossRefPubMedGoogle Scholar
  11. Brennan, A. C., G. Woodward, O. Seehausen, V. Muñoz-fuentes, C. Moritz, A. Guelmami, R. J. Abbott & P. Edelaar, 2014. Hybridization due to changing species distributions: adding problems or solutions to conservation of biodiversity during global change? Evolutionary Ecology Research 16: 475–491.Google Scholar
  12. Broughton, R. E., K. C. Vedala, T. M. Crowl & L. L. Ritterhouse, 2011. Current and historical hybridization with differential introgression among three species of cyprinid fishes (genus Cyprinella). Genetica 139: 699–707.CrossRefPubMedGoogle Scholar
  13. Buitrago-Suárez, U. A. & B. M. Burr, 2007. Taxonomy of the catfish genus Pseudoplatystoma Bleeker (Siluriformes: pimelodidae) with recognition of eight species. Zootaxa 1512: 1–38.Google Scholar
  14. Campos, J. L., 2010. O cultivo do pintado (Pseudoplatystoma corruscans, Spix; Agassiz, 1829), outras espécies do genero Pseudoplatystoma e seus híbridos. In Baldisserotto, B. B. & L. C. Gomes (eds.), Espécies Nativas Para a Piscicultura no Brasil. Universidade Federal de Santa Maria, Santa Maria: 335–361.Google Scholar
  15. Carvalho, D. C., A. S. Seerig, B. S. A. F. Brasil, D. V. Crepaldi & D. A. A. Oliveira, 2013. Molecular identification of the hybrid between the catfish species Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum using a set of eight microsatellite markers. Journal of Fish Biology 83: 671–676.CrossRefGoogle Scholar
  16. Demandt, M. H. & S. Bergek, 2009. Identification of cyprinid hybrids by using geometric morphometrics and microsatellites. Journal of Applied Ichthyology 25: 695–701.CrossRefGoogle Scholar
  17. Devitt, T. J., S. J. E. Baird & C. Moritz, 2011. Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone. BMC Evolutionary Biology 11: 245.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dubut, V., M. Sinama, J.-F. Martin, E. Meglécz, J. Fernandez, R. Chappaz, A. Gilles & C. Costedoat, 2010. Cross-species amplification of 41 microsatellites in European cyprinids: a tool for evolutionary, population genetics and hybridization studies. BMC Research Notes 3: 135.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Earl, D. A. & B. M. VonHoldt, 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.CrossRefGoogle Scholar
  20. Epifanio, J. & D. Philipp, 2001. Simulating the extinction of parental lineages from introgressive hybridization: the effects of fitness, initial proportions of parental taxa, and mate choice. Reviews in Fish Biology and Fisheries 10: 339–354.CrossRefGoogle Scholar
  21. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.CrossRefPubMedGoogle Scholar
  22. Excoffier, L., G. Laval & S. Schneider, 2005. ARLEQUIN ver. 3. 0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1: 47–50.Google Scholar
  23. Fernandes, R., L. C. Gomes & A. A. Agostinho, 2003. Pesque-pague: negócio ou fonte de dispersão de espécies exóticas? Acta Scientiarum Biological Sciences 25: 115–120.Google Scholar
  24. Goodman, M., J. Pedwaydon, J. Czeluzniak, J. Suzuki, T. Gotoh, L. Moens, F. Shishikura, et al., 1988. An evolutionary tree for invertebrate globin sequences. Journal of Molecular Evolution 7: 236–249.CrossRefGoogle Scholar
  25. Goodman, S. J., 1997. RST CALC: a collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Molecular Ecology 6: 881–885.CrossRefGoogle Scholar
  26. Goudet, J., 2002. FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3.
  27. Gunnel, K., M. K. Tada, F. A. Hawthorne, E. R. Keeley & M. B. Ptacek, 2008. Geographic patterns of introgressive hybridization between native Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and introduced rainbow trout (O. mykiss) in the South Fork of the Snake River watershed. Idaho. Conservation Genetics 9: 49–64.CrossRefGoogle Scholar
  28. Guo, S. W. & E. A. Thompson, 1992. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48: 361–372.CrossRefPubMedGoogle Scholar
  29. Haas, F., M. A. Pointer, N. Saino, A. Brodin, N. I. Mundy & B. Hansson, 2009. A analysis of population genetic differentiation and genotype-phenotype association across the hybrid zone of carrion and hooded crows using microsatellites and MC1R. Molecular Ecology 18: 294–305.CrossRefPubMedGoogle Scholar
  30. Haldane, J. B. S., 1954. An exact test for randomness of mating. Journal of Genetics 52: 631–635.CrossRefGoogle Scholar
  31. Hansen, M. M., E. Kenchington & E. E. Nielsen, 2001. Assigning individual fish to populations using microsatellite DNA markers. Fish and Fisheries 2: 93–112.CrossRefGoogle Scholar
  32. Hashimoto, D. T., F. D. Prado, J. A. Senhorini, F. Foresti & F. Porto-Foresti, 2013. Detection of post-F1 fish hybrids in broodstock using molecular markers: approaches for genetic management in aquaculture. Aquaculture Research 44: 876–884.CrossRefGoogle Scholar
  33. Hashimoto, D. T., F. D. Prado, J. A. Senhorini, F. Foresti & F. Porto-Foresti, 2014. Aquaculture of Neotropical Catfish Hybrids: Genetic Strategies for Conservation and Management. In Bradley, R. (ed.), Carp and Catfish: Biology, Behavior and Conservation Strategies. Nova Science Publishers, New York: 1–10.Google Scholar
  34. Hasselman, D. J., E. E. Argo, M. C. McBride, P. Bentzen, T. F. Schultz, A. A. Perez-Umphrey & E. P. Palkovacs, 2014. Human disturbance causes the formation of a hybrid swarm between two naturally sympatric fish species. Molecular Ecology 23: 1137–1152.CrossRefPubMedGoogle Scholar
  35. Ho, N. C. K., A. L. F. C. H. Ho, G. D. Underwood, A. Underwood, D. Zhang & J. Lin, 2015. A simple molecular protocol for the identification of hybrid Western Atlantic seahorses, Hippocampus erectus × H. reidi, and potential consequences of hybrids for conservation. Journal of Zoo and Aquarium Research 3: 11–20.Google Scholar
  36. Huxel, G. R., 1999. Rapid displacement of native species by invasive species: effects of hybridization. Biological Conservation 89: 143–152.CrossRefGoogle Scholar
  37. Jakobsson, M. & N. A. Rosenberg, 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806.CrossRefPubMedGoogle Scholar
  38. Jombart, T. & I. Ahmed, 2011. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27: 3070–3071.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jombart, T., S. Devillard & F. Balloux, 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11: 94.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Khosravi, R., H. R. Rezaei & M. Kaboli, 2013. Detecting hybridization between Iranian wild wolf (Canis lupus pallipes) and free-ranging domestic dog (Canis familiaris) by analysis of microsatellite markers. Zoological Sciences 30: 27–34.CrossRefGoogle Scholar
  41. Kovach, A. I., J. Walsh, J. Ramsdell & W. Kelley Thomas, 2015. Development of diagnostic microsatellite markers from whole-genome sequences of Ammodramus sparrows for assessing admixture in a hybrid zone. Ecology and Evolution 5: 2267–2283.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Laikre, L., A. Antunes, A. Apostolidis, P. Berrebi, A. Duguid, A. Ferguson J. L. García-Marín, R. Guyomard, M. M. Hansen, K. Hindar, M. L. Koljonen, C. Largiader, P. Martínez, E. E. Nielsen, S. Palm, D. Ruzzante, N. Ryman & C.Triantaphyllidis, 1999. Conservation Genetic Management of Brown Trout (Salmo trutta) in Europe. (“TROUTCONCERT”: EU FAIR CT97-3882). Stockholm University, Sweden.Google Scholar
  43. Machado-Schiaffino, G., F. Juanes & E. Garcia-Vazquez, 2010. Introgressive hybridization in North American hakes after secondary contact. Molecular Phylogenetics and Evolution 55: 552–558.CrossRefPubMedGoogle Scholar
  44. Mallet, J., 2005. Hybridization as an invasion of the genome. Trends in Ecology and Evolution 20: 229–237.CrossRefPubMedGoogle Scholar
  45. Masaoka, T., H. Okamoto, K. Arakia, H. Nagoya, A. Fujiwarab & T. Kobayashic, 2012. Identification of the hybrid between Oryzias latipes and Oryzias curvinotus using nuclear genes and mitochondrial gene region. Marine Genomics 7: 37–41.CrossRefPubMedGoogle Scholar
  46. Mateus, L. A. F. & J. M. F. Penha, 2007. Dinâmica populacional de quatro espécies de grandes bagres na bacia do rio Cuiabá, Pantanal norte, Brasil (Siluriformes, Pimelodidae). Revista Brasileira de Zoologia 24: 87–98.CrossRefGoogle Scholar
  47. McBride, M. C., T. V. Willis, R. G. Bradford & P. Bentzen, 2014. Genetic diversity and structure of two hybridizing anadromous fishes (Alosa pseudoharengus, Alosa aestivalis) across the northern portion of their ranges. Conservation Genetics 15: 1281–1298.CrossRefGoogle Scholar
  48. Metcalf, J. L., M. R. Siegle & A. P. Martin, 2008. Hybridization dynamics between Colorado’s native cutthroat trout and introduced rainbow trout. Journal of Heredity 99: 149–156.CrossRefPubMedGoogle Scholar
  49. Moyer, G. R., B. M. Burr & C. Krajewski, 2004. Phylogenetic relationships of thorny catfishes (Siluriformes, Doradidae) inferred from molecular and morphological data. Zoological Journal of Linnean Society 140: 551–575.CrossRefGoogle Scholar
  50. Muhlfeld, C. C., C. Clint, T. E. McMahon, D. Belcer & J. L. Kershner, 2009. Spatial and temporal spawning dynamics of native westslope cutthroat trout, Oncorhynchus clarkii lewisi, introduced rainbow trout, Oncorhynchus mykiss, and their hybrids. Canadian Journal of Fisheries and Aquatic Sciences 66: 1153–1168.CrossRefGoogle Scholar
  51. Nielsen, E. E., L. A. Bach & P. Kotlicki, 2006. Hybridlab (version 1.0): a program for generating simulated hybrids from population samples. Molecular Ecology Notes 6: 971–973.CrossRefGoogle Scholar
  52. Palumbi, S. R., 1996. Nucleic acids II: the polymerase chain reaction. In Hillis, D., C. Moritz & B. Mable (eds.), Molecular Systematics. Sinauer Associates Inc., Sunderland: 205–247.Google Scholar
  53. Porto-Foresti, F., D. T. Hashimoto, J. A. Senhorini & F. Foresti, 2010. Hibridação em piscicultura: monitoramento e perspectivas. In Baldisserotto, B. & L. C. Gomes (eds.), Espécies Nativas Para Piscicultura no Brasil. UFMS, Mato Grosso do Sul: 589–606.Google Scholar
  54. Prado, F. D., B. G. Pardo, J. Guerra-Varela, J. A. Senhorini, P. Martínez, F. Foresti & F. Porto-Foresti, 2014. Development and characterization of 16 microsatellites for the Neotropical catfish Pseudoplatystoma reticulatum and cross species analysis. Conservation Genetics Resources 6: 679–681.CrossRefGoogle Scholar
  55. Prado, F. D., D. T. Hashimoto, F. F. Mendonça, J. A. Senhorini, F. Foresti & F. Porto-Foresti, 2011. Molecular identification of hybrids between Neotropical catfish species Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum. Aquaculture Research 42: 1890–1894.CrossRefGoogle Scholar
  56. Prado, F. D., D. T. Hashimoto, J. A. Senhorini, F. Foresti & F. Porto-Foresti, 2012a. Detection of hybrids and genetic introgression in wild stocks of two catfish species (Siluriformes: pimelodidae): the impact of hatcheries in Brazil. Fisheries Research 125–126: 300–305.CrossRefGoogle Scholar
  57. Prado, F. D., T. L. Nunes, J. A. Senhorini, J. Bortolozzi, F. Foresti & F. Porto-Foresti, 2012b. Cytogenetic characterization of F1, F2 and backcross hybrids of Neotropical catfish species Pseudoplatystoma corruscans and P. reticulatum (Pimelodidae, Siluriformes). Genetics and Molecular Biology 35: 57–64.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population Structure using multilocus genotype data. Genetics 155: 945–959.PubMedPubMedCentralGoogle Scholar
  59. R Development Core Team, 2014. The R project for statistical computing, Version 3.2.3.
  60. Raymond, M. & F. Rousset, 1995. GENEPOP (ver. 3.3): a population genetics software for exact test and ecumenicism. Journal of Heredity 86: 248–249.Google Scholar
  61. Resende, E.K., A.C. Catella, F.L. Nascimento, S.S. Palmeiras, R.A.C. Pereira, M.S. Lima & V.L.L. Almeida, 1996. Biologia do curimbatá (Prochilodus lineatus), pintado (Pseudoplatystoma coruscans) e cachara (Pseudoplatystoma fasciatum) na bacia hidrográfica do rio Miranda, Pantanal do Mato Grosso do Sul. EMBRAPA – CPAP, Boletim de Pesquisa 02, Mato Grosso do Sul, Brasil.Google Scholar
  62. Revaldaves, E., L. H. G. Pereira, F. Foresti & C. Oliveira, 2005. Isolation and characterization of microsatellite loci in Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) and cross-species amplification. Molecular Ecology Notes 5: 463–465.CrossRefGoogle Scholar
  63. Rhymer, J. M. & D. Simberloff, 1996. Extinction by hybridisation and introgression. Annual Review of Ecology, Evolution, and Systematics 27: 83–109.CrossRefGoogle Scholar
  64. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  65. Roques, S., P. Duchesne & L. Bernatchez, 1999. Potential of microsatellites for individual assignment: the North Atlantic redfish (genus Sebastes) species complex as a case study. Molecular Ecology 8: 1703–1717.CrossRefPubMedGoogle Scholar
  66. Rousset, F., 1996. Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics 142: 1357–1362.PubMedPubMedCentralGoogle Scholar
  67. Sanz, N., R. M. Araguas, R. Fernández, M. Vera & J. L. García-Marín, 2009. Efficiency of markers and methods for detecting hybrids and introgression in stocked populations. Conservation Genetics 10: 225–236.CrossRefGoogle Scholar
  68. Toledo-Filho, S.A., L.F. Almeida-Toledo, F. Foresti, G. Bernardino & D. Calcagnotto, 1994. Monitoramento e conservação genética em projeto de hibridação entre pacu e tambaqui. CCS/USP, Cadernos de Ictiogenética 2, São Paulo, Brasil.Google Scholar
  69. Toledo-Filho, S.A., L.F. Almeida-Toledo, F. Foresti, D. Calcagnotto, S.B.A.F. Santos & G. Bernardino, 1998. Programas Genéticos de Seleção, Hibridação e Endocruzamento Aplicados à Piscicultura. CCS/USP, Cadernos de Ictiogenética 4, São Paulo, Brasil.Google Scholar
  70. Tomoko, O., 1983. On the evolution of multigene families. Theoretical Population Biology 23(2): 216–240.CrossRefGoogle Scholar
  71. Torrico, J. P., N. Hubert, E. Desmarais, F. Duponchelle, J. Nuñez-Rodriguez, C. G. Montoya-Burgos, F. M. Davila, A. A. Carvajal-Vallejos, F. Bonhommed Grajales & J. F. Renno, 2009. Molecular phylogeny of the genus Pseudoplatystoma (Bleeker, 1862): biogeographic and evolutionary implications. Molecular Phylogenetics and Evolution 51: 588–594.CrossRefPubMedGoogle Scholar
  72. Trigo, T. C., F. P. Tirelli, T. R. O. Freitas & E. Eizirik, 2014. Comparative assessment of genetic and morphological variation at an extensive hybrid zone between two wild cats in southern Brazil. PloS One 9: e108469.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Vähä, J. P. & C. Primmer, 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Molecular Ecology 15: 63–72.CrossRefPubMedGoogle Scholar
  74. Vaini, J. O., A. B. Grisolia, F. D. Prado & F. Porto-Foresti, 2014. Genetic identification of interspecific hybrid of Neotropical catfish species (Pseudoplatystoma corruscans vs. Pseudoplatystoma reticulatum) in rivers of Mato Grosso do Sul State. Brazil. Neotropical Ichthyology 12: 635–641.CrossRefGoogle Scholar
  75. Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills & P. Shipley, 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.CrossRefGoogle Scholar
  76. Vilas, R., C. Bouza, J. Castro, A. López & P. Martínez, 2010. Management units of brown trout from Galicia (NW: Spain) based on spatial genetic structure analysis. Conservation Genetics 11: 897–906.CrossRefGoogle Scholar
  77. Walter, R. P., E. S. Gnyra, L. I. Söderberg & D. D. Heath, 2014. Rapid genetic identification of brown bullhead (Ameiurus nebulosus), black bullhead (Ameiurus melas) and their hybrids. Conservation Genetics Resources 6: 507–509.CrossRefGoogle Scholar
  78. Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.CrossRefGoogle Scholar
  79. White, T. J., T. Bruns, S. Lee & J. W. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. H. Gelfand, J. J. Sninsky & T. J. White (eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, New York: 315–322.Google Scholar
  80. Willis, S. C., J. Macrander, I. P. Farias & G. Ortí, 2012. Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus Cichla) using multi-locus data. BMC Evolutionary Biology 12: 96.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhang, Z., K. A. Glove, V. Wennevik, T. Svasand, A. G. E. Sorvik, P. Fiske & S. Karlsson, 2013. Genetic analysis of Atlantic salmon captured in a netting station reveals multiple escapement events from commercial fish farms. Fisheries Management and Ecology 20: 42–45.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fernanda Dotti do Prado
    • 1
    • 7
  • Raquel Fernandez-Cebrián
    • 2
  • Diogo Teruo Hashimoto
    • 3
  • José Augusto Senhorini
    • 4
  • Fausto Foresti
    • 5
  • Paulino Martínez
    • 6
  • Fábio Porto-Foresti
    • 1
  1. 1.Universidade Estadual Paulista (UNESP)BauruBrazil
  2. 2.GeneaquaLugoSpain
  3. 3.Centro de Aquicultura da Unesp (CAUNESP)JaboticabalBrazil
  4. 4.Centro Nacional de Pesquisa e Conservação de Peixes ContinentaisInstituto Chico Mendes de Conservação (CEPTA/ICMBio)PirassunungaBrazil
  5. 5.Universidade Estadual Paulista (UNESP)BotucatuBrazil
  6. 6.Universidade de Santiago de Compostela (USC)LugoSpain
  7. 7.Departamento de BiologiaUniversidade Estadual Paulista (UNESP)BauruBrazil

Personalised recommendations