Advertisement

Hydrobiologia

, Volume 787, Issue 1, pp 375–385 | Cite as

Eutrophication and climate warming alter spatial (depth) co-occurrence patterns of lake phytoplankton assemblages

  • Francesco Pomati
  • Blake Matthews
  • Ole Seehausen
  • Bas W. Ibelings
Primary Research Paper

Abstract

The composition and dynamics of plankton communities are critically affected by human-induced environmental changes. We analysed 33 years of phytoplankton monthly data collected in Lake Zurich (Switzerland), assigning organisms (genus level) to taxonomic groups (class, family), Reynolds associations and size categories. The aim was to understand how eutrophication and climate change have influenced taxa co-occurrence patterns within and between groups over the lake water column (14 depths, 0–135 m), using null-models to test for non-random spatial (depth) assembly. We found that the whole community showed high taxa co-occurrence levels, significantly deviating over time from random assembly concurrently with lake warming and reduced nutrient loading. This pattern was driven mostly by the depth structure of metalimnetic assemblages during summer and autumn. The prevalence of non-random spatial patterns changed for different taxonomic and functional groups, with only few significant deviations from null-model expectations. Within taxonomic and functional groups (particularly Classes and size categories), the frequency of spatial overdispersion of taxa decreased over time while the frequency of clustering increased. Our data suggest that the relative importance of mechanisms determining phytoplankton metacommunity dynamics have changed along with environmental gradients shaping water column structure.

Keywords

Phytoplankton Co-occurrence Variance ratio Eutrophication Climate change Community assembly 

Notes

Acknowledgments

We thank O. Koster (WVZ) for providing access and valuable insights to the Lake Zurich data, R. Ptacnik for critically reviewing the manuscript, and the anonymous reviewers for their constructive suggestions. FP research was in part supported by Eawag action field project Aquaprobe to BWI and OS.

Author Contributions

OS and BWI originally formulated the idea; FP prepared the data; FP and BM performed statistical analyses; FP drafted the manuscript; all authors commented on the manuscript.

Supplementary material

10750_2016_2981_MOESM1_ESM.docx (360 kb)
Supplementary material 1 (DOCX 360 kb)
10750_2016_2981_MOESM2_ESM.xlsx (48 kb)
Supplementary material 2 (XLSX 48 kb)

References

  1. Adams, D. C., 2007. Organization of Plethodon salamander communities: guild-based community assembly. Ecology 88: 1292–1299.CrossRefPubMedGoogle Scholar
  2. Adler, P. B. & J. M. Drake, 2008. Environmental variation, stochastic extinction, and competitive coexistence. The American Naturalist 172: 186–195.CrossRefPubMedGoogle Scholar
  3. Anneville, O., S. Souissi, S. Gammeter, D. Straile & S. M. D. Wimereux, 2004. Seasonal and inter-annual scales of variability in phytoplankton assemblages: comparison of phytoplankton dynamics in three peri-alpine lakes over a period of 28 years. Freshwater Biology 49: 98–115.CrossRefGoogle Scholar
  4. Bell, G., 2005. The co-distribution of species in relation to the neutral theory of community ecology. Ecology 86: 1757–1770.CrossRefGoogle Scholar
  5. Cadotte, M., C. H. Albert & S. C. Walker, 2013. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology letters 16: 1234–1244.CrossRefPubMedGoogle Scholar
  6. Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava & S. Naeem, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.CrossRefPubMedGoogle Scholar
  7. Cavender-Bares, J., K. H. Kozak, P. V. A. Fine & S. W. Kembel, 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12: 693–715.CrossRefPubMedGoogle Scholar
  8. Chase, J. M. & J. A. Myers, 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London Series B, Biological sciences 366: 2351–2363.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cleveland, R. B., W. S. Cleveland, J. E. McRae & I. Terpenning, 1990. STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics 6: 3–73.Google Scholar
  10. Colwell, R. K. & T. F. Rangel, 2009. Hutchinson’s duality: the once and future niche. Proceedings of the National Academy of Sciences of the United States of America 106(Suppl): 19651–19658.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Diamond, J. M., 1975. Assembly of species communities. In Diamond, J. M. & M. L. Cody (eds.), Ecology and Evolution of Communities. Belknap Press of Harvard University Press, Cambridge, MA: 342–444.Google Scholar
  12. Durham, W. M. & R. Stocker, 2012. Thin phytoplankton layers: Characteristics, mechanisms, and consequences. Annual Review of Marine Science 4: 177–207.CrossRefPubMedGoogle Scholar
  13. Edwards, K. F. & J. J. Stachowicz, 2011. Spatially stochastic settlement and the coexistence of benthic marine animals. Ecology 92: 1094–1103.CrossRefPubMedGoogle Scholar
  14. Edwards, K. F., E. Litchman & C. A. Klausmeier, 2012. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecology Letters 16: 56–63.CrossRefPubMedGoogle Scholar
  15. Edwards, K. F., E. Litchman & C. A. Klausmeier, 2013. Functional traits explain phytoplankton responses to environmental gradients across lakes of the United States. Ecology 94: 1626–1635.CrossRefPubMedGoogle Scholar
  16. Emerson, B. C. & R. G. Gillespie, 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology & Evolution 23: 619–630.CrossRefGoogle Scholar
  17. Fraley, C. & A. E. Raftery, 2002. Model-based clustering, discriminant analysis and density estimation. Journal of the American Statistical Association 97: 611–631.CrossRefGoogle Scholar
  18. Fukami, T., 2010. Community assembly dynamics in space. In Verhoef, H. A. & P. J. Morin (eds), Community Ecology: Processes, Models, and Applications. Oxford University Press, Oxford: 45–54.Google Scholar
  19. Gotelli, N. J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.CrossRefGoogle Scholar
  20. Gotelli, N. J. & D. J. McCabe, 2002. Species Co-occurrence: A meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83: 2091.CrossRefGoogle Scholar
  21. Gravel, D., F. Guichard & M. E. Hochberg, 2011. Species coexistence in a variable world. Ecology Letters 14: 828–839.CrossRefPubMedGoogle Scholar
  22. Hart, S. P. & D. J. Marshall, 2009. Spatial arrangement affects population dynamics and competition independent of community composition. Ecology 90: 1485–1491.CrossRefPubMedGoogle Scholar
  23. Hautier, Y., P. A. Niklaus & A. Hector, 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324: 636–638.CrossRefPubMedGoogle Scholar
  24. HilleRisLambers, J., P. B. Adler, W. S. Harpole, J. M. Levine & M. M. Mayfield, 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43: 227–248.CrossRefGoogle Scholar
  25. Jochimsen, M. C., R. Kümmerlin, D. Straile & J. Grover, 2012. Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication. Ecology Letters 16: 81–89.CrossRefPubMedGoogle Scholar
  26. Kathleen Lyons, S., K. L. Amatangelo, A. K. Behrensmeyer, A. Bercovici, J. L. Blois, M. Davis, W. A. DiMichele, A. Du, J. T. Eronen, J. Tyler Faith, G. R. Graves, N. Jud, C. Labandeira, C. V. Looy, B. McGill, J. H. Miller, D. Patterson, S. Pineda-Munoz, R. Potts, B. Riddle, R. Terry, A. Tóth, W. Ulrich, A. Villaseñor, S. Wing, H. Anderson, J. Anderson, D. Waller & N. J. Gotelli, 2015. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529: 80–83.CrossRefPubMedGoogle Scholar
  27. Klausmeier, C. A. & E. Litchman, 2001. Algal games: The vertical distribution of phytoplankton in poorly mixed water columns. Limnology and Oceanography 46: 1998–2007.CrossRefGoogle Scholar
  28. Kraft, N. J. B. & D. D. Ackerly, 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80: 401–422.CrossRefGoogle Scholar
  29. Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller & J. M. Levine, 2014. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29(5): 592–599.CrossRefGoogle Scholar
  30. Kremer, C. T., J. P. Gillette, L. G. Rudstam, P. Brettum & R. Ptacnik, 2014. A compendium of cell and natural unit biovolumes for > 1200 freshwater phytoplankton species. Ecology 95: 2984–2984.CrossRefGoogle Scholar
  31. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  32. Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.CrossRefGoogle Scholar
  33. Livingston, G. F. & S. M. Philpott, 2010. A metacommmunity approach to co-occurrence patterns and the core-satellite hypothesis in a community of tropical arboreal ants. Ecological Research 25: 1129–1140.CrossRefGoogle Scholar
  34. Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57: 205–225.CrossRefGoogle Scholar
  35. Longhi, M. L. & B. E. Beisner, 2009. Environmental factors controlling the vertical distribution of phytoplankton in lakes. J Plankton Res 31: 1195–1207.CrossRefGoogle Scholar
  36. Magurran, A. E., S. R. Baillie, S. T. Buckland, J. M. Dick, D. A. Elston, E. M. Scott, R. I. Smith, P. J. Somerfield & A. D. Watt, 2010. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology & Evolution 25: 574–582.CrossRefGoogle Scholar
  37. Matthews, B. & F. Pomati, 2012. Reversal in the relationship between species richness and turnover in a phytoplankton community. Ecology 93: 2435–2447.CrossRefPubMedGoogle Scholar
  38. Mayfield, M. M. & J. M. Levine, 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085–1093.CrossRefPubMedGoogle Scholar
  39. Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson & L. Gough, 2001. What is the observed relationship between species richness and productivity? Ecology 82: 2381–2396.CrossRefGoogle Scholar
  40. Padisák, J., L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  41. Pomati, F., B. Matthews, J. Jokela, A. Schildknecht & B. W. Ibelings, 2012. Effects of re-oligotrophication and climate warming on plankton richness and community stability in a deep mesotrophic lake. Oikos 121: 1317–1327.CrossRefGoogle Scholar
  42. Pomati, F., N. J. B. Kraft, T. Posch, B. Eugster, J. Jokela & B. W. Ibelings, 2013. Individual cell based traits obtained by scanning flow-cytometry show selection by biotic and abiotic environmental factors during a phytoplankton spring bloom. PloS one 8: e71677.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pomati, F., C. Tellenbach, B. Matthews, P. Venail, B. W. Ibelings & R. Ptacnik, 2015. Challenges and prospects for interpreting long-term phytoplankton diversity changes in Lake Zurich (Switzerland). Freshwater Biology 60(5): 1052–1059.CrossRefGoogle Scholar
  44. Posch, T., O. Köster, M. M. Salcher & J. Pernthaler, 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change 2: 1–5.CrossRefGoogle Scholar
  45. R-Development-Core-Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.R-project.org/.
  46. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  47. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428.CrossRefGoogle Scholar
  48. Rosindell, J., S. P. Hubbell & R. S. Etienne, 2011. The unified neutral theory of biodiversity and biogeography at age ten. Trends in ecology & evolution 26: 340–348.CrossRefGoogle Scholar
  49. Ryabov, A. B. & B. Blasius, 2011. A graphical theory of competition on spatial resource gradients. Ecology Letters 14: 220–228.CrossRefPubMedGoogle Scholar
  50. Scheffer, M. & E. H. van Nes, 2006. Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the National Academy of Sciences of the United States of America 103: 6230–6235.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Seehausen, O. & D. Schluter, 2004. Male-male competition and nuptial-colour displacement as a diversifying force in Lake Victoria cichlid fishes. Proceedings of The Royal Society B: Biological Sciences 271: 1345–1353.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shen, G., M. Yu, X. Hu, X. Mi, H. Ren, I. Sun & K. Ma, 2009. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecological Research 90: 3033–3041.Google Scholar
  53. Stomp, M., J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. A. Wollenzien & L. J. Stal, 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432: 104–107.CrossRefPubMedGoogle Scholar
  54. Vergnon, R., E. H. van Nes & M. Scheffer, 2012. Emergent neutrality leads to multimodal species abundance distributions. Nature Communications 3: 663.CrossRefPubMedGoogle Scholar
  55. Vonlanthen, P., D. Bittner, A. G. Hudson, K. A. Young, R. Müller, B. Lundsgaard-Hansen, D. Roy, S. Di Piazza, C. R. Largiader & O. Seehausen, 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482: 357–362.CrossRefPubMedGoogle Scholar
  56. Weiher, E., D. Freund, T. Bunton, A. Stefanski, T. Lee & S. Bentivenga, 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical transactions of the Royal Society of London Series B, Biological sciences 366: 2403–2413.CrossRefPubMedPubMedCentralGoogle Scholar
  57. White, E. P., S. K. M. Ernest, P. B. Adler, A. H. Hurlbert & S. K. Lyons, 2010. Integrating spatial and temporal approaches to understanding species richness. Philosophical transactions of the Royal Society of London Series B, Biological sciences 365: 3633–3643.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francesco Pomati
    • 1
  • Blake Matthews
    • 2
  • Ole Seehausen
    • 2
  • Bas W. Ibelings
    • 2
    • 3
  1. 1.Department of Aquatic EcologyEawag: Swiss Federal Institute of Water Science and TechnologyDübendorfSwitzerland
  2. 2.Centre for Ecology Evolution and BiogeochemistryEawag: Swiss Federal Institute of Water Science and TechnologyKastanienbaumSwitzerland
  3. 3.Institut F.-A. ForelUniversité de GenèveVersoixSwitzerland

Personalised recommendations