Hydrobiologia

, Volume 791, Issue 1, pp 193–207 | Cite as

Allopatric speciation in the desert: diversification of cichlids at their geographical and ecological range limit in Iran

  • Julia Schwarzer
  • Naghme Shabani
  • Hamid Reza Esmaeili
  • Salome Mwaiko
  • Ole Seehausen
ADVANCES IN CICHLID RESEARCH II

Abstract

Cichlids are textbook examples for rapid diversification and high species diversity. While in South America, several hundred and in Africa, more than 1500 species of cichlid fish have been described, only one single cichlid species, Iranocichla hormuzensis Coad 1982, was known from Iran, the easternmost range margin of the species-rich African cichlids (Cichlidae: Pseudocrenilabrinae). The aim of our paper was to assess the genetic and phenotypic diversity among populations of Iranocichla across most of its geographical range in Southern Iran. For this, we sequenced two mitochondrial genes and collected color observation of male nuptial coloration in different habitats. Besides conspicuous differences in male nuptial coloration, we found considerable genetic differentiation among Iranocichla populations pointing to the existence of at least two allopatric species, with no evidence of more than one species at one site. Diversification within Iranocichla started, based on our data, in the middle or late Pleistocene and was followed by further population differentiation and bottlenecks during isolation events in the last glacial maximum. Population dispersal leading to the population structure observed today most likely occurred in the course of the early Holocene sea-level rise.

Keywords

Iranian cichlids Cichlidae Iranocichla Vicariant speciation Last glacial maximum 

Supplementary material

10750_2016_2976_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1648 kb)
10750_2016_2976_MOESM2_ESM.xlsx (17 kb)
Supplementary material 2 (XLSX 17 kb)

References

  1. Abdoli, A., 2000. The Inland Water Fishes of Iran. Iranian Museum of Nature and Wildlife, Tehran.Google Scholar
  2. Afshar, S. I., 2000. Shenakht-e Ostan-e Hormozgan. Hyrmand press, Tehran.Google Scholar
  3. Banister, K. E & M. A. Clarke, 1977. The freshwater fishes of the Arabian Peninsula. The Scientific Results of the Oman Flora and Fauna Survey 1975 The Journal of Oman Studies Special Report No, 1.Google Scholar
  4. Both, B., 1977. The making of Iran. Geographyc Magazine 1977: 243–249.Google Scholar
  5. Brawand, D., C. E. Wagner, Y. I. Li, M. Malinsky, I. Keller, S. Fan, et al., 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513: 375–381.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clement, M., D. Posada & K. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.CrossRefPubMedGoogle Scholar
  7. Coad, B. W., 1982. A new genus and species of cichlid endemic to southern Iran. Copeia 1: 28–37.CrossRefGoogle Scholar
  8. Dijkstra, P. D., J. Lindström, N. B. Metcalfe, C. K. Hemelrijk, M. Brendel, O. Seehausen & T. G. G. Groothuis, 2010. Frequency-dependent social dominance in a color polymorphic cichlid fish. Evolution 64: 2797–2807.PubMedGoogle Scholar
  9. Dupanloup, I., S. Schneider, & L. Excoffier, 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11: 2571–2581.CrossRefPubMedGoogle Scholar
  10. Edgar, R. C., 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Esmaeili, H. R., 2014. Ein ungewöhnlicher Endemit aus dem Iran. DATZ 05: 32–36.Google Scholar
  12. Esmaeili, H. R., Z. Ganjali & M. Monsefi, 2008. Reproductive biology of the endemic Iranian cichlid, Iranocichla hormuzensis Coad, 1982 from Mehran River, southern Iran. Environmental Biology of Fishes 84: 141–145.CrossRefGoogle Scholar
  13. Esmaeili, H. R., B. W. Coad, A. Gholamifard, N. Nazari & A. Teimory, 2010. Annotated checklist of the freshwater fishes of Iran. Zoosystematica Rossica 19: 361–386.Google Scholar
  14. Esmaeili, H. R., A. Khajepana, H. Mehraban, E. L. M. I. Amir, H. Melekzehi & A. Pazira, 2015. Fishes of the Mashkid and Makran basins of Iran: an updated checklist and ichthyogeography. Iranian Journal of Ichthyology 2: 113–132.Google Scholar
  15. Excoffier, L. & H. E. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.CrossRefPubMedGoogle Scholar
  16. Freyhof, J. F. G., Ekmekçi, A. Ali., Khamees, N. R., Özulu, M., Hamidan, N., Küçük, F & K. G. Smith, 2014. Freshwater fishes (Chap. 3), In Smith, K. G., V. Barrios, W. R. T. Darwall & C. Numa (eds), The Status and Distribution of Freshwater Biodiversity in the Eastern Mediterranean. 19–42.Google Scholar
  17. Fryer, G. & T. D. Iles, 1972. Cichlid Fishes of the Great Lakes of Africa. Oliver & Boyd, Edinburgh.Google Scholar
  18. Fu, Y. X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.PubMedPubMedCentralGoogle Scholar
  19. Genner, M. J., O. Seehausen, D. H. Lunt, D. A. Joyce, P. W. Shaw, G. R. Carvalho & G. F. Turner, 2007. Age of cichlids: new dates for ancient lake fish radiations. Molecular Biology and Evolution 24: 1269–1282.CrossRefPubMedGoogle Scholar
  20. Harpending, H. C., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66: 591–600.PubMedGoogle Scholar
  21. Ho, S. Y., M. J. Phillips, A. Cooper & A. J. Drummond, 2005. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution 22: 1561–1568.CrossRefPubMedGoogle Scholar
  22. Hojat Ansari, T., 2008. Food, feeding and age determination of Iranocichla hormuzensis Coad, 1982 (Perciformes: Cichlidae). M.Sc. thesis. Submitted to Biology Department, Shiraz University, Shiraz.Google Scholar
  23. Jayaram, K. C., 1999. The Freshwater Fishes of the Indian Region. Narendra Publishing House, Delhi. 551 p.Google Scholar
  24. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Mentjies & A. Drummond, 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kehl, M., 2009. Quaternary climate change in Iran—the state of knowledge. Erdkunde 63: 1–17.CrossRefGoogle Scholar
  26. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.CrossRefPubMedGoogle Scholar
  27. Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Paabo, F. X. Villablance & A. C. Wilson, 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences 86: 6196–6200.CrossRefGoogle Scholar
  28. Kocher, T. D., J. A. Conroy, K. R. McKaye, J. R. Stauffer & S. F. Lockwood, 1995. Evolution of NADH dehydrogenase subunit 2 in East African cichlid fish. Molecular Phylogenetics and Evolution 4: 420–432.CrossRefPubMedGoogle Scholar
  29. Kosswig, C., 1965. Zur historischen Zoogeographie der Ichthyofauna im Süsswasser des sudlichen Kleinasiens. Zoologische Jahrbücher für Systematik 92: 83–90.Google Scholar
  30. Kosswig, C., 1973. Über die Ausbreitungswege sogenannter perimediterraner Süsswasserfische. Bonner Zoologische Beiträge 24: 165–177.Google Scholar
  31. Kullander, S. O., 1998. A phylogeny and classification of the South American Cichlidae (Teleostei: Perciformes). Phylogeny and classification of Neotropical fishes 31: 461–498.Google Scholar
  32. Kumar, S., K. Tamura & M. Nei, 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163.CrossRefPubMedGoogle Scholar
  33. Lambeck, K., 1988. Geophysical Geodesy. Clarendon, Oxford: 718.Google Scholar
  34. Lambeck, K., 1996. Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth and Planetary Science Letters 142: 43–57.CrossRefGoogle Scholar
  35. Nelson, J. S., 2006. Fishes of the World. Wiley, New York.Google Scholar
  36. Purser, B. H. & E. Seibold, 1973. The principal environmental factors influencing Holocene sedimentation and diagenesis in the Persian Gulf. In Purser, B. H. (ed.), the Persian Gulf. Springer, Berlin: 1–19.CrossRefGoogle Scholar
  37. Regard, V., O. Bellier, J. C. Thomas, M. Abbassi, J. L. Mercier, E. Shabanian, K. H. Feghhi & S. H. Soleymaani, 2004. The accommodation of the Arabia-Asia convergence in the Zagros-Makran transfer zone, SE Iran: a transition between collision and subduction through a young deforming system. Tectonics 23: 1–24.CrossRefGoogle Scholar
  38. Sarnthein, M., 1972. Sediments and history of the postglacial transgression in the Persian Gulf and northwest Gulf of Oman. Marine Geology 12: 245–266.CrossRefGoogle Scholar
  39. Schneider, S. & L. Excoffier, 1999. Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152: 1079–1089.PubMedPubMedCentralGoogle Scholar
  40. Schwarzer, J., B. Misof, D. Tautz & U. K. Schliewen, 2009. The root of the East African cichlid radiations. BMC Evolutionary Biology 9: 186.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schulz, T., 2004. Iran, der dritte Versuch. Die Aquarien- und Terrarienzeitschrift 57: 24–27.Google Scholar
  42. Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society of London B 273: 1987–1998.CrossRefGoogle Scholar
  43. Seehausen, O., 2015. Process and pattern in cichlid radiations–inferences for understanding unusually high rates of evolutionary diversification. New Phytologist 207: 304–312.CrossRefPubMedGoogle Scholar
  44. Seehausen, O. & D. Schluter, 2004. Male–male competition and nuptial–colour displacement as a diversifying force in Lake Victoria cichlid fishes. Proceedings of the Royal Society of London B 271: 1345–1353.CrossRefGoogle Scholar
  45. Selz, O. M., M. E. Pierotti, M. E. Maan, C. Schmid & O. Seehausen, 2014a. Female preference for male color is necessary and sufficient for assortative mating in 2 cichlid sister species. Behavioral Ecology 25: 612–626.CrossRefGoogle Scholar
  46. Selz, O. M., R. Thommen, M. E. Maan & O. Seehausen, 2014b. Behavioural isolation may facilitate homoploid hybrid speciation in cichlid fish. Journal of Evolutionary Biology 27: 275–289.CrossRefPubMedGoogle Scholar
  47. Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.CrossRefPubMedGoogle Scholar
  48. Stiassny, M. L. J., G. De Marchi & A. Lamboj, 2010. A new species of Danakilia (Teleostei, Cichlidae) from Lake Abaeded in the Danakil Depression of Eritrea (East Africa). Zootaxa 2690: 43–52.Google Scholar
  49. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.PubMedPubMedCentralGoogle Scholar
  50. Teimori, A., 2013. The Evolutionary History and Taxonomy of Aphanius (Teleostei: Cyprinodontidae) Species in Iran and the Persian Gulf Region (Doctoral dissertation, München, Ludwig-Maximilians-Universität, Diss., 2013).Google Scholar
  51. Teller, J. T., K. W. Glennie, N. Lancaster & A. K. Singhvi, 2000. Calcareous dunes of the United Arab Emirates and Noah’s Flood: the postglacial reflooding of the Persian (Arabian) Gulf. Quaternary International 68: 297–308.CrossRefGoogle Scholar
  52. Trewavas, E., 1983. Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia. British Museum of Natural History, London.CrossRefGoogle Scholar
  53. Verheyen, E., W. Salzburger, J. Snoeks & A. Meyer, 2003. Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300: 325–329.CrossRefPubMedGoogle Scholar
  54. Wagner, C. E., L. J. Harmon & O. Seehausen, 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487: 366–369.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Fish Ecology and Evolution, Center for Ecology, Evolution & BiogeochemistryEawag Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
  2. 2.Division of Aquatic Ecology, Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
  3. 3.Zoologisches Forschungsmuseum KoenigBonnGermany
  4. 4.Laboratoire d’Ecologiee Alpine (LECA), UMR-CNRS 5553Université Joseph FourierGrenoble Cedex 9France
  5. 5.Ichthyology and Molecular Systematics Lab., Department of Biology, College of SciencesShiraz UniversityShirazIran
  6. 6.Max Planck Institute for Evolutionary BiologyPlönGermany

Personalised recommendations