, Volume 787, Issue 1, pp 111–121 | Cite as

Statolith morphometrics as a tool to distinguish among populations of three cubozoan species

  • Christopher J. Mooney
  • Michael J. Kingsford
Primary Research Paper


Little is known on cubomedusae population structure, and what is known for many species is mostly from rare occurrences or from a metapopulation perspective. Knowledge on population units is critical for understanding population dynamics as well as predicting potential risk to swimmers. Otolith shape analysis is a proven stock identification technique in fishes; here, we applied shape analysis to cubomedusae statoliths. Medusae of three species were collected from three distinct populations around the coastline and nearshore islands of northern Queensland, Australia. Canonical discriminant analysis was performed on normalised elliptical fourier coefficients for statolith proximal, oral and lateral faces and combinations of statolith faces for each species. Significant discrimination of sampling populations was achieved in two species (Copula sivickisi statolith proximal face and Chironex fleckeri oral + lateral faces). Differences in statolith shape, therefore, were capable of successful discrimination among sampling locations but was not capable for one species. The ecological niche, and associated ecological pressures, of some cubozoan species (e.g. Carukia barnesi) may not vary enough for differences in statolith shape among locations to occur. Statolith shape in combination with other stock identification techniques, such as genetics and/or elemental chemistry, will help to discriminate the spatial scales of cubozoan populations.


Box jellyfish Elliptical fourier analysis Stock identification 



We would like to thank Jamie Seymour, Lisa-Ann Gershwin, Avril Underwood and Townsville Lifeguard Service for provision of some statoliths. We would also like to thank the many volunteers who assisted with field collections. This research was supported by grants from the Australian Lions Foundation to CJM and the Marine and Tropical Science Research Facility to MJK.

Supplementary material

10750_2016_2949_MOESM1_ESM.pdf (229 kb)
Supplementary material 1 (PDF 228 kb)


  1. Begg, G. A. & J. R. Waldman, 1999. An holistic approach to fish stock identification. Fisheries Research 43: 35–44.CrossRefGoogle Scholar
  2. Bird, J. L., D. T. Eppler & D. M. Checkley, 1986. Comparisons of herring otoliths using fourier series shape analysis. Canadian Journal of Fisheries and Aquatic Sciences 43: 1228–1234.CrossRefGoogle Scholar
  3. Bonhomme, V., S. Picq, J. Claude, D. Dkin, C. Gaucherel, R. Kriebel, N. Martinez, M. Reginato, N. Telmon, & A. Wishkerman, 2013a. Momocs: Shape Analysis of Outlines. R package version 0.2-04.
  4. Bonhomme, V., S. Prasad & C. Gaucherel, 2013b. Intraspecific variability of pollen morphology as revealed by elliptic fourier analysis. Plant Systematics and Evolution 299: 811–816.CrossRefGoogle Scholar
  5. Bonhomme, V., S. Picq, C. Gaucherel & J. Claude, 2014. Momocs: Outline analysis using R. Journal of Statistical Software 56: 1–24.CrossRefGoogle Scholar
  6. Bordehore, C., V. L. Fuentes, D. Atienza, C. Barbera, D. Fernandez-Jover, M. Roig, M. J. Acevedo-Dudley, A. J. Canepa & J. M. Gili, 2011. Detection of an unusual presence of the cubozoan Carybdea marsupialis at shallow beaches located near Denia, Spain (south-western Mediterranean). Marine Biodiversity Records 4: 1–6.CrossRefGoogle Scholar
  7. Bordehore, C., V. L. Fuentes, J. G. Segarra, M. Acevedo, A. Canepa & J. Raventós, 2015. Use of an inverse method for time series to estimate the dynamics of and management strategies for the box jellyfish Carybdea marsupialis. PLoS ONE 10(9): e0137272.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cadrin, S., 2010. Stock identification of marine populations. In Elewa, A. M. (ed.), Morphometrics for Nonmorphometricians’ Lecture Notes in Earth Sciences, Vol. 124. Springer, Berlin: 219–232.Google Scholar
  9. Campana, S. E. & J. M. Casselman, 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences 50: 1062–4083.CrossRefGoogle Scholar
  10. Cardinale, M., P. Doering-Arjes, M. Kastowsky & H. Mosegaard, 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 61: 158–167.CrossRefGoogle Scholar
  11. Clarke, M. R., 1978. The cephalopod statolith – an introduction to its form. Journal of the Marine Biological Association of the United Kingdom 58: 701–712. doi: 10.1007/S0025315400041345.CrossRefGoogle Scholar
  12. Claude, J., 2008. Morphometrics with R. New York, Springer.Google Scholar
  13. Coughlan, J. P., J. Seymour & T. F. Cross, 2006. Isolation and characterization of seven polymorphic microsatellite loci in the box jellyfish (Chironex fleckeri, Cubozoa, Cnidaria). Molecular Ecology Notes 6: 41–43.CrossRefGoogle Scholar
  14. Edgar, G. J., 2008. Australian marine life: the plants and animals of temperate waters. Sydney, New Holland Publishers.Google Scholar
  15. Galley, E. A., P. J. Wright & F. M. Gibb, 2006. Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic cod. ICES Journal of Marine Science 63: 1710–1717.CrossRefGoogle Scholar
  16. Garm, A., M. Oskarsson & D. E. Nilsson, 2011. Box jellyfish use terrestrial visual cues for navigation. Current Biology 21: 798–803.CrossRefPubMedGoogle Scholar
  17. Garm, A., M. M. Coates, R. Gad, J. Seymour & D. E. Nilsson, 2007. The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. Journal of Comparative Physiology A 193: 547–557.CrossRefGoogle Scholar
  18. Gordon, M. & J. Seymour, 2009. Quantifying movement of the tropical Australian cubozoan Chironex fleckeri using acoustic telemetry. Hydrobiologia 616: 87–97.CrossRefGoogle Scholar
  19. Gordon, M. & J. Seymour, 2012. Growth, development and temporal variation in the onset of six Chironex fleckeri medusae seasons: a contribution to understanding jellyfish ecology. PLoS One 7: 1–11.Google Scholar
  20. Green, C. P., S. G. Robertson, P. A. Hamer, P. Virtue, G. D. Jackson & N. A. Moltschaniwskyj, 2015. Combining statolith element composition and Fourier shape data allows discrimination of spatial and temporal stock structure of arrow squid (Nototodarus gouldi). Canadian Journal of Fisheries and Aquatic Sciences 72(11): 1609–1618.CrossRefGoogle Scholar
  21. Haddon, M. & T. J. Willis, 1995. Morphometric and meristic comparison of orange roughy (Hoplostehus atlanticus: Trachichthyidae) from the Puysegur Bank and Lord Howe Rise, New Zealand, and its implications for stock structure. Marine Biology 123: 19–27.CrossRefGoogle Scholar
  22. Hamner, W. M., M. S. Jones & P. P. Hamner, 1995. Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa). Marine and Freshwater Research 46: 985–990.CrossRefGoogle Scholar
  23. Hamer, P. A., J. Kemp, S. Robertson & J. S. Hindell, 2012. Multiple otolith techniques aid stock discrimination of a broadly distributed deepwater fishery species, blue grenadier, Macruronus novaezelandiae. Fisheries Research 113: 21–34.CrossRefGoogle Scholar
  24. Hartwick, R. F., 1991. Distributional ecology and behaviour of the early life stages of the box-jellyfish Chironex fleckeri. Hydrobiologia 216: 181–188.CrossRefGoogle Scholar
  25. Hecht, T. & S. Appelbaum, 1982. Morphology and taxonomic significance of the otoliths of some bathypelagic Anguilloidei and Saccopharyngoidei from the Sargasso Sea. Helgolander Meeresunters 35: 301–308.CrossRefGoogle Scholar
  26. Hossein, A., K. Alireza, F. Hamid, V. Saber, A. Hassan & J. Shrinivas, 2011. Detection of morphometric differentiation between isolated up-and downstream populations of Siah Mahi (Capoeta capoeta gracilis) (Pisces: Cyprinidae) in the Tajan River (Iran). Hydrobiologia 673: 41–52.CrossRefGoogle Scholar
  27. Kingsford, M. J. & C. J. Mooney, 2014. The ecology of box jellyfishes. In Pitt, K. & C. Lucas (eds), Jellyfish Blooms. Springer, Dordrecht: 267–302.CrossRefGoogle Scholar
  28. Kingsford, M. J., J. E. Seymour & M. D. O’Callaghan, 2012. Abundance patterns of cubozoans on and near the Great Barrier Reef. Hydrobiologia 690: 257–268.CrossRefGoogle Scholar
  29. Krapivka, S., J. E. Toro, A. C. Alcapán, M. Astorga, P. Presa, M. Pérez & R. Guiñez, 2007. Shell-shape variation along the latitudinal range of the Chilean blue mussel Mytilus chilensis (Hupe 1854). Aquaculture Research 38: 1770–1777.CrossRefGoogle Scholar
  30. Lewis, C. & B. Bentlage, 2009. Clarifying the identity of the Japanese Habu-kurage, Chironex yamaguchii, sp. nov. (Cnidaria: Cubozoa: Chirodropida). Zootaxa 2030: 59–65.Google Scholar
  31. Lombarte, A. & J. Lleonart, 1993. Otolith size changes related with body growth, habitat depth and temperature. Environmental Biology of Fishes 37: 297–306.CrossRefGoogle Scholar
  32. Madeira, C., M. J. Alves, N. Mesquita, S. E. Silva & J. Paula, 2012. Tracing geographical patterns of a population differentiation in a widespread mangrove gastropod: genetic and geometric morphometrics surveys along the eastern African coast. Biological Journal of the Linnean Society 107: 647–663.CrossRefGoogle Scholar
  33. Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla & R. A. Relyea, 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology and Evolution 20: 685–692.CrossRefPubMedGoogle Scholar
  34. Mitteroecker, P. & F. Bookstein, 2011. Linear discrimination, ordination, and the visualisation of selection gradients in modern morphometrics. Evolutionary Biology 38: 100–114.CrossRefGoogle Scholar
  35. Mooney, C. J. & M. J. Kingsford, 2016. Statolith morphometrics can discriminate among taxa of cubozoan jellyfishes. PLoS One 11(5): e0155719.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Palma, J. & J. P. Andrade, 2002. Morphological study of Diplodus sargus, Diplodus puntazzo, and Lithognathus mormyrus (Sparidae) in the Eastern Atlantic and Mediterranean Sea. Fisheries Research 57: 1–8.CrossRefGoogle Scholar
  37. Paul, K., R. Oeberst & C. Hammer, 2013. Evaluation of otolith shape analysis as a tool for discriminating adults of Baltic cod stocks. Journal of Applied Ichthyology 29: 743–750.CrossRefGoogle Scholar
  38. Pothin, K., C. Gonzalez-Salas, P. Chabanet & R. Lecomte-Finiger, 2006. Distinction between Mulloidichthys flavolineatus juveniles from Reunion Island and Mauritius Island (south-west Indian Ocean) based on otolith morphometrics. Journal of Fish Biology 68: 1–16.Google Scholar
  39. R Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  40. Saunders, T. & S. Mayfield, 2008. Predicting biological variation using a simple morphometric marker in the sedentary marine invertebrate Haliotis rubra. Marine Ecology Progress Series 366: 75–89.CrossRefGoogle Scholar
  41. Sen, S., S. Jahageerder, A. K. Jaiswar, S. K. Chakraborty, A. M. Sajina & G. R. Dash, 2011. Stock structure analysis of Decapterus russelli (Ruppell, 1830) from east and west coast of India using truss network analysis. Fisheries Research 112: 38–43.CrossRefGoogle Scholar
  42. Sinclair, M., 1988. Marine Populations: an Essay on Population Regulation and Speciation. University of Washington Press, Seattle.Google Scholar
  43. Strauss, R. E., 2010. Discriminating groups of organisms. In Elawa, A. M. T. (ed.), Morphometrics for Nonmorphometricians. Lecture Notes in Earth Sciences, Vol. 124. Springer, Heidelberg: 73–91.CrossRefGoogle Scholar
  44. Sun, M. M., J. H. Huang, S. G. Jiang, O. B. Yang, F. L. Zhou, C. Y. Zhu, L. S. Yang & T. F. Su, 2012. Morphometric analysis of four different populations of Penaeus monodon (Crustacea, Decapoda, Penaeidae). Aquaculture Research. doi: 10.1111/j.1365-2109.2012.03210.x.Google Scholar
  45. Thomas, R. & N. A. Moltschaniwskyj, 1999. Ontogenetic changes in size and shape of statoliths: implications for age and growth of the short-lived tropical squid Sepioteuthis lessoniana (Cephalopoda: Loliginidae). Fishery Bulletin 97: 636–645.Google Scholar
  46. Trowbridge, C. D., 1994. Life at the edge: population dynamics and salinity tolerance of a high intertidal, pool-dwelling ascoglossan opisthobranch on New Zealand rocky shores. Journal of Experimental Marine Biology and Ecology 182: 65–84.CrossRefGoogle Scholar
  47. Ueno, S., C. Imai & A. Mitsutani, 1995. Fine growth rings found in statolith of a cubomedusa Carybdea rastonii. Journal of Plankton Research 17: 1381–1384.CrossRefGoogle Scholar
  48. Ujjania, N. C. & M. P. S. Kohli, 2011. Landmark-based morphometric analysis for selected species of Indian major carp (Catla catla, Ham. 1822). International Journal of Food, Agriculture and Veterinary Sciences 1: 64–74.Google Scholar
  49. Vieira, A. R., A. Neves, V. Sequiera, R. B. Paiva & L. S. Gordo, 2014. Otolith shape analysis as a tool for stock discrimination of forkbeard (Phycis phycis) in the Northeast Atlantic. Hydrobiologia 728: 103–110.CrossRefGoogle Scholar
  50. Vignon, M. & F. Morat, 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series 411: 231–241.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.College of Science and Engineering and ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia

Personalised recommendations