, Volume 796, Issue 1, pp 111–120 | Cite as

Are generic early-warning signals reliable indicators of population collapse in rotifers?

  • Stefan SommerEmail author
  • Koen J. van Benthem
  • Diego Fontaneto
  • Arpat Ozgul


Timely identification of endangered populations is vital to save them from extirpation. Here we tested whether six commonly used early-warning metrics are useful predictors of impending extirpation in laboratory rotifer (Brachionus calyciflorus) populations. To this end, we cultured nine rotifer clones in a constant laboratory environment, in which the rotifer populations were known to grow well, and in a deteriorating environment, in which the populations eventually perished. We monitored population densities in both environments until the populations in the deteriorating environment had gone extinct. We then used the population-density time series to compute the early-warning metrics and the temporal trends in these metrics. We found true positives (i.e. correct signals) in only two metrics, the standard deviation and the coefficient of variation, but the standard deviation also generated a false positive. Moreover, the signal produced by the coefficient of variation appeared when the populations in the deteriorating environment were about to cross the critical threshold and began to decline. As such, it cannot be regarded as an early-warning signal. Together, these findings support the growing evidence that density-based generic early-warning metrics—against their intended use—might not be universally suited to identify populations that are about to collapse.


Brachionus Population density Extirpation True positive False positive 



Lake Orta sediments were collected and processed by Andrea Lami, Piero Guilizzoni, and Stefano Gerli (Institute of Ecosystem Study, Verbania Pallanza, Italy). We thank Chris Clements and two anonymous reviewers for helpful comments on the manuscript. This study was supported by a European Research Council Starting Grant to A. O. (Grant No. 337785).


  1. Becks, L. & A. F. Agrawal, 2013. Higher rates of sex evolve under K-selection. Journal of Evolutionary Biology 26: 900–905.CrossRefPubMedGoogle Scholar
  2. Biggs, R., S. R. Carpenter & W. A. Brock, 2009. Turning back from the brink: detecting an impending regime shift in time to avert it. Proceedings of the National Academy of Sciences of the United States of America 106: 826–831.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boerlijst, M. C., T. Oudman & A. M. de Roos, 2013. Catastrophic collapse can occur without early warning: examples of silent catastrophes in structured ecological models. PLoS ONE 8: e62033.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boettiger, C. & A. Hastings, 2012. Quantifying limits to detection of early warning for critical transitions. Journal of the Royal Society Interface 9: 2527–2539.CrossRefPubMedCentralGoogle Scholar
  5. Bonacina, C., 2001. Lake Orta: the undermining of an ecosystem. Journal of Limnology 60: 53–59.CrossRefGoogle Scholar
  6. Bonacina, C. & R. Baudo, 2001. Lake Orta: a case study (Part 1). Journal of Limnology 60: 50–52.Google Scholar
  7. Boschetti, C., F. Leasi & C. Ricci, 2011. Developmental stages in diapausing eggs: an investigation across monogonont rotifer species. Hydrobiologia 662: 149–155.CrossRefGoogle Scholar
  8. Burthe, S. J., P. A. Henrys, E. B. Mackay, B. M. Spears, R. Campbell, L. Carvalho, B. Dudley, I. D. M. Gunn, D. G. Johns, S. C. Maberly, L. May, M. A. Newell, S. Wanless, I. J. Winfield, S. J. Thackeray & F. Daunt, 2016. Do early warning indicators consistently predict nonlinear change in long-term ecological data? Journal of Applied Ecology 53: 666–676.CrossRefGoogle Scholar
  9. Calderoni, A., R. Mosello & D. Ruggiu, 1992. Sixty years of limnology on Lago d’Orta: a case history of recovery from heavy pollution. Memorie dell’Istituto Italiano di Idrobiologia 50: 201–223.Google Scholar
  10. Camusso, M., G. Tartari & A. Zirino, 1991. Measurement and prediction of copper ion activity in Lake Orta, Italy. Environmental Science & Technology 25: 678–683.CrossRefGoogle Scholar
  11. Clark, J. S., S. R. Carpenter, M. Barber, S. Collins, A. Dobson, J. A. Foley, D. M. Lodge, M. Pascual, R. Pielke Jr., W. Pizer, C. Pringle, W. V. Reid, K. A. Rose, O. Sala, W. H. Schlesinger, D. H. Wall & D. Wear, 2001. Ecological forecasts: an emerging imperative. Science 293: 657–660.CrossRefPubMedGoogle Scholar
  12. Ceballos, G., P. R. Ehrlich, A. D. Barnosky, A. García, R. M. Pringle & T. M. Palmer, 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1: e1400253.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clements, C. F., J. M. Drake, J. I. Griffiths & A. Ozgul, 2015. Factors influencing the detectability of early warning signals of population collapse. The American Naturalist 186: 50–58.CrossRefPubMedGoogle Scholar
  14. Clements, C. F. & A. Ozgul, 2016. Including trait-based early warning signals helps predict population collapse. Nature Communications 7: 10984.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Collen, B., L. McRae, S. Deinet, A. De Palma, T. Carranza, N. Cooper, J. Loh & J. E. M. Baillie, 2011. Predicting how populations decline to extinction. Philosophical Transactions of the Royal Society B 366: 2577–2586.CrossRefGoogle Scholar
  16. Dai, L., K. S. Korolev & J. Gore, 2013. Slower recovery in space before collapse of connected populations. Nature 496: 355–358.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dai, L., D. Vorselen, K. S. Korolev & J. Gore, 2012. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336: 1175–1177.CrossRefPubMedGoogle Scholar
  18. Dakos, V., S. R. Carpenter, W. A. Brock, A. M. Ellison, V. Guttal, A. R. Ives, S. Kéfi, V. Livina, D. A. Seekell, E. H. van Nes & M. Scheffer, 2012. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7: e41010.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dakos, V., S. R. Carpenter, E. H. van Nes & M. Scheffer, 2015. Resilience indicators: prospects and limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society B 370: 20130263.CrossRefGoogle Scholar
  20. Declerck, S. A. J. & S. Papakostas, 2016. Monogonont rotifers as model systems for the study of micro-evolutionary adaptation and its eco-evolutionary implications. Hydrobiologia. doi: 10.1007/s10750-016-2782-y.Google Scholar
  21. De Vos, J. M., L. N. Joppa, J. L. Gittleman, P. R. Stephens & S. L. Pimm, 2015. Estimating the normal background rate of species extinction. Conservation Biology 29: 452–462.CrossRefPubMedGoogle Scholar
  22. Ditlevsen, P. D. & S. J. Johnsen, 2010. Tipping points: early warning and wishful thinking. Geophysical Research Letters 37: L19703.CrossRefGoogle Scholar
  23. Drake, J. M. & B. D. Griffen, 2010. Early warning signals of extinction in deteriorating environments. Nature 467: 456–459.CrossRefPubMedGoogle Scholar
  24. Ferrando, M. D., C. R. Janssen, E. Andreu & G. Persoone, 1993. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus III. The effects of chemicals on the feeding behavior. Ecotoxicology and Environmental Safety 26: 1–9.CrossRefPubMedGoogle Scholar
  25. Gama-Flores, J. L., M. E. Castellanos-Paez, S. S. S. Sarma & S. Nandini, 2007. Effect of pulsed exposure to heavy metals (copper and cadmium) on some population variables of Brachionus calyciflorus Pallas (Rotifera: Brachionidae: Monogononta). Hydrobiologia 593: 201–208.CrossRefGoogle Scholar
  26. Gilbert, J. J., 2003. Environmental and endogenous control of sexuality in a rotifer life cycle: developmental and population biology. Evolution & Development 5: 19–24.CrossRefGoogle Scholar
  27. Guillard, R. R. L. & C. J. Lorenzen, 1972. Yellow-green algae with chlorophyllide c. Journal of Phycology 8: 10–14.Google Scholar
  28. Halbach, U., 1970. Einfluss der Temperatur auf die Populationsdynamik des planktischen Rädertieres Brachionus calyciflorus Pallas. Oecologia 4: 176–207.CrossRefPubMedGoogle Scholar
  29. Halbach, U. & G. Halbach-Keup, 1974. Quantitative Beziehungen zwischen Phytoplankton und der Populationsdynamik des Rotators Brachionus calyciflorus Pallas. Befunde aus Laboratoriumsexperimenten und Freilanduntersuchungen. Archiv für Hydrobiologie 73: 273–309.Google Scholar
  30. Hastings, A. & D. B. Wysham, 2010. Regime shifts in ecological systems can occur with no warning. Ecology Letters 13: 464–472.CrossRefPubMedGoogle Scholar
  31. Hefley, T. J., A. J. Tyre & E. E. Blankenship, 2013. Statistical indicators and state-space population models predict extinction in a population of bobwhite quail. Theoretical Ecology 6: 319–331.CrossRefGoogle Scholar
  32. Janssen, C. R., G. Persoone & T. W. Snell, 1994. Cyst-based toxicity tests. VIII. Short-chronic toxicity tests with the freshwater rotifer Brachionus calyciflorus. Aquatic Toxicology 28: 243–258.CrossRefGoogle Scholar
  33. Janssen, C. R., M. D. Ferrando Rodrigo & G. Persoone, 1993. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus I. Conceptual framework and applications. Hydrobiologia 255/256: 21–32.Google Scholar
  34. Kéfi, S., V. Dakos, M. Scheffer, E. H. van Nes & M. Rietkerk, 2013. Early warning signals also precede non-catastrophic transitions. Oikos 122: 641–648.CrossRefGoogle Scholar
  35. Krkošek, M. & J. M. Drake, 2014. On signals of phase transitions in salmon population dynamics. Proceedings of the Royal Society B 281: 20133221.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ludwig, D., 1999. Is it meaningful to estimate a probability of extinction? Ecology 80: 298–310.CrossRefGoogle Scholar
  37. Martínez-Ruiz, C. & E. M. García-Roger, 2015. Being first increases the probability of long diapause in rotifer resting eggs. Hydrobiologia 745: 111–121.CrossRefGoogle Scholar
  38. Massie, T. M., B. Blasius, G. Weithoff, U. Gaedke & G. F. Fussmann, 2010. Cycles, phase synchronization, and entrainment in single-species phytoplankton populations. Proceedings of the National Academy of Sciences of the United States of America 107: 4236–4241.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Montero-Pau, J., C. Gabaldón, M. J. Carmona & M. Serra, 2014. Measuring the potential for growth in populations investing in diapause. Ecological Modelling 272: 76–83.CrossRefGoogle Scholar
  40. Perretti, C. T. & S. B. Munch, 2012. Regime shift indicators fail under noise levels commonly observed in ecological systems. Ecological Applications 22: 1772–1779.CrossRefPubMedGoogle Scholar
  41. Piscia, R., P. Guilizzoni, D. Fontaneto, D. A. L. Vignati, P. G. Appleby & M. Manca, 2012. Dynamics of rotifer and cladoceran resting stages during copper pollution and recovery in a subalpine lake. Annales de Limnologie - International Journal of Limnology 48: 151–160.CrossRefGoogle Scholar
  42. Piscia, R., S. Tabozzi, R. Bettinetti, L. Nevalainen & M. M. Manca, 2016. Unexpected increases in rotifer resting egg abundances during the period of contamination of Lake Orta. Journal of Limnology 75(s2): 76–85.Google Scholar
  43. Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.CrossRefGoogle Scholar
  44. Preston, B. L. & T. W. Snell, 2001. Full life-cycle toxicity assessment using rotifer resting egg production: implications for ecological risk assessment. Environmental Pollution 114: 399–406.CrossRefPubMedGoogle Scholar
  45. Regan, H. M., M. Colyvan & M. A. Burgman, 2002. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecological Applications 12: 618–628.CrossRefGoogle Scholar
  46. Scheffer, M., J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk & G. Sugihara, 2009. Early-warning signals for critical transitions. Nature 461: 53–59.CrossRefPubMedGoogle Scholar
  47. Scheffer, M., S. R. Carpenter, V. Dakos & E. H. van Nes, 2015. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annual Review of Ecology, Evolution, and Systematics 46: 145–167.CrossRefGoogle Scholar
  48. Schröder, T., 2005. Diapause in monogonont rotifers. Hydrobiologia 546: 291–306.CrossRefGoogle Scholar
  49. Snell, T. W. & B. D. Moffat, 1992. A 2-d life cycle test with the rotifer Brachionus calyciflorus. Environmental Toxicology and Chemistry 11: 1249–1257.CrossRefGoogle Scholar
  50. Snell, T. W. & C. R. Janssen, 1995. Rotifers in ecotoxicology: a review. Hydrobiologia 313/314: 231–247.CrossRefGoogle Scholar
  51. Snell, T. W., B. D. Moffat, C. Janssen & G. Persoone, 1991. Acute toxicity tests using rotifers IV. Effects of cyst age, temperature, and salinity on the sensitivity of Brachionus calyciflorus. Ecotoxicology and Environmental Safety 21: 308–317.CrossRefPubMedGoogle Scholar
  52. Sommer, S., S. Nandini, S. S. S. Sarma, A. Ozgul & D. Fontaneto, 2016. Rotifers in Lake Orta: a potential ecological and evolutionary model system. Journal of Limnology 75(s2): 67–75.Google Scholar
  53. Strogatz, S. H., 2014. Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed. Westview Press, Boulder.Google Scholar
  54. U.S. Environmental Protection Agency, 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th ed. Office of Water, Washington, DC.Google Scholar
  55. Veraart, A. J., E. J. Faassen, V. Dakos, E. H. van Nes, M. Lürling & M. Scheffer, 2012. Recovery rates reflect distance to a tipping point in a living system. Nature 481: 357–359.Google Scholar
  56. Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera: Biology, Ecology and Systematics, Vol. 1, 2nd ed. Backhuys Publishers, Leiden.Google Scholar
  57. Wissel, C., 1984. A universal law of the characteristic return time near thresholds. Oecologia 65: 101–107.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefan Sommer
    • 1
    Email author
  • Koen J. van Benthem
    • 1
  • Diego Fontaneto
    • 2
  • Arpat Ozgul
    • 1
  1. 1.Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
  2. 2.National Research CouncilInstitute of Ecosystem StudyVerbania PallanzaItaly

Personalised recommendations