Hydrobiologia

, Volume 785, Issue 1, pp 327–335 | Cite as

Development of non-lethal monitoring of stable isotopes in asp (Leuciscus aspius): a comparison of muscle, fin and scale tissues

  • M. Vašek
  • L. Vejřík
  • I. Vejříková
  • M. Šmejkal
  • R. Baran
  • M. Muška
  • J. Kubečka
  • J. Peterka
Primary Research Paper

Abstract

We explored whether fin clips and scales can be used as potential non-lethal alternatives to muscle tissue for examining the isotopic composition of asp Leuciscus aspius, a locally threatened freshwater species. Dorsal fin clips, scales and muscle plugs were collected from two asp populations and subsequently analysed for nitrogen and carbon stable isotopes. Both fins and scales were consistently depleted in 15N and enriched in 13C relative to muscle. A linear regression found that the isotope values in asp fins and scales were significantly related to those in the muscle tissue. These results indicate that fins and scales have the potential to be a substitute for muscle in stable isotope studies of asp, thus providing a non-destructive sampling method for this species. Nevertheless, to determine reliable conversion factors between tissues, a subset of individuals covering a sufficiently wide range of body sizes may need to be sacrificed for any given population.

Keywords

Fin clips Fish scales Fractionation Non-lethal sampling Stable isotopes Threatened species 

References

  1. Anderson, C. & G. Cabana, 2006. Does δ15N in river food webs reflect the intensity and origin of N loads from the watershed? Science of the Total Environment 367: 968–978.CrossRefPubMedGoogle Scholar
  2. Blabolil, P., D. Ricard, J. Peterka, M. Říha, T. Jůza, M. Vašek, M. Prchalová, M. Čech, M. Muška, J. Seďa, T. Mrkvička, D. S. Boukal & J. Kubečka, 2016. Predicting asp and pikeperch recruitment in a riverine reservoir. Fisheries Research 173: 45–52.CrossRefGoogle Scholar
  3. Blanco, A., S. Deudero & A. Box, 2009. Muscle and scale isotopic offset of three fish species in the Mediterranean Sea: dentex dentex, Argyrosomus regius and Xyrichtys novacula. Rapid Communications in Mass Spectrometry 23: 2321–2328.CrossRefPubMedGoogle Scholar
  4. Cabana, G. & J. B. Rasmussen, 1994. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372: 255–257.CrossRefGoogle Scholar
  5. Cano-Rocabayera, O., A. Maceda-Veiga & A. de Sostoa, 2015. Fish fins and scales as non-lethally sampled tissues for stable isotope analysis in five fish species of north-eastern Spain. Environmental Biology of Fishes 98: 925–932.CrossRefGoogle Scholar
  6. Church, M. R., J. L. Ebersole, K. M. Rensmeyer, R. B. Couture, F. T. Barrows & D. L. G. Noakes, 2009. Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 66: 1–5.CrossRefGoogle Scholar
  7. Clarke, L. R., D. T. Vidergar & D. H. Bennett, 2005. Stable isotopes and gut content show diet overlap among native and introduced piscivores in a large oligotrophic lake. Ecology of Freshwater Fish 14: 267–277.CrossRefGoogle Scholar
  8. DeVries, D. R. & R. V. Frie, 1996. Determination of age and growth. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques, 2nd ed. American Fisheries Society, Bethesda: 483–512.Google Scholar
  9. Donabaum, K., M. Schagerl & M. T. Dokulil, 1999. Integrated management to restore macrophyte domination. Hydrobiologia 395(396): 87–97.CrossRefGoogle Scholar
  10. Estrada, J. A., M. Lutcavage & S. R. Thorrold, 2005. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Marine Biology 147: 37–45.CrossRefGoogle Scholar
  11. Fincel, M. J., J. A. VanDeHey & S. R. Chipps, 2012. Non-lethal sampling of walleye for stable isotope analysis: a comparison of three tissues. Fisheries Management and Ecology 19: 283–292.CrossRefGoogle Scholar
  12. Finlay, J. C., S. Khandwala & M. E. Power, 2002. Spatial scales of carbon flow in a river food web. Ecology 83: 1845–1859.CrossRefGoogle Scholar
  13. Freyhof, J. & M. Kottelat, 2008. Aspius aspius. In The IUCN Red List of Threatened Species 2008: e.T2178A9311209 [available on doi at 10.2305/IUCN.UK.2008.RLTS.T2178A9311209.en]. Downloaded on 21 March 2016.
  14. Graham, C. T., S. S. C. Harrison & C. Harrod, 2013. Development of non-lethal sampling of carbon and nitrogen stable isotope ratios in salmonids: effects of lipid and inorganic components of fins. Isotopes in Environmental and Health Studies 49: 555–566.CrossRefPubMedGoogle Scholar
  15. Guy, C. S., H. L. Blankenship & L. A. Nielsen, 1996. Tagging and marking. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques, 2nd ed. American Fisheries Society, Bethesda: 353–383.Google Scholar
  16. Hanisch, J. R., W. M. Tonn, C. A. Paszkowski & G. J. Scrimgeour, 2010. δ13C and δ15N signatures in muscle and fin tissues: nonlethal sampling methods for stable isotope analysis of salmonids. North American Journal of Fisheries Management 30: 1–11.CrossRefGoogle Scholar
  17. Hayden, B., C. Harrod & K. K. Kahilainen, 2014. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish. Ecology 95: 538–552.CrossRefPubMedGoogle Scholar
  18. Hoffman, J. C., M. E. Sierszen & A. M. Cotter, 2015. Fish tissue lipid-C:N relationships for correcting δ13C values and estimating lipid content in aquatic food-web studies. Rapid Communications in Mass Spectrometry 29: 2069–2077.CrossRefPubMedGoogle Scholar
  19. Inamura, O., J. Zhang & M. Minagawa, 2012. δ13C and δ15N values in scales of Micropterus salmoides largemouth bass as a freshwater environmental indicator. Rapid Communications in Mass Spectrometry 26: 17–24.CrossRefPubMedGoogle Scholar
  20. Jardine, T. D., R. J. Hunt, B. J. Pusey & S. E. Bunn, 2011. A non-lethal sampling method for stable carbon and nitrogen isotope studies of tropical fishes. Marine and Freshwater Research 62: 83–90.CrossRefGoogle Scholar
  21. Karlsson, J. & P. Byström, 2005. Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnology and Oceanography 50: 538–543.CrossRefGoogle Scholar
  22. Kelly, M. H., W. G. Hagar, T. D. Jardine & R. A. Cunjak, 2006. Nonlethal sampling of sunfish and slimy sculpin for stable isotope analysis: how scale and fin tissue compare with muscle tissue. North American Journal of Fisheries Management 26: 921–925.CrossRefGoogle Scholar
  23. Kidd, K. A., H. A. Bootsma, R. H. Hesslein, D. C. G. Muir & R. E. Hecky, 2001. Biomagnification of DDT through the benthic and pelagic food webs of Lake Malawi, East Africa: importance of trophic level and carbon source. Environmental Science and Technology 35: 14–20.CrossRefPubMedGoogle Scholar
  24. Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Publications Kottelat, Cornol.Google Scholar
  25. McIntyre, J. K., D. A. Beauchamp, M. M. Mazur & N. C. Overman, 2006. Ontogenetic trophic interactions and benthopelagic coupling in Lake Washington: evidence from stable isotopes and diet analysis. Transactions of the American Fisheries Society 135: 1312–1328.CrossRefGoogle Scholar
  26. Perga, M. E. & D. Gerdeaux, 2003. Using the δ13C and δ15N of whitefish scales for retrospective ecological studies: changes in isotope signatures during the restoration of Lake Geneva, 1980–2001. Journal of Fish Biology 63: 1197–1207.CrossRefGoogle Scholar
  27. Pinnegar, J. K. & N. V. C. Polunin, 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology 13: 225–231.CrossRefGoogle Scholar
  28. Sanderson, B. L., C. D. Tran, H. J. Coe, V. Pelekis, E. A. Steel & W. L. Reichert, 2009. Nonlethal sampling of fish caudal fins yields valuable stable isotope data for threatened and endangered fishes. Transactions of the American Fisheries Society 138: 1166–1177.CrossRefGoogle Scholar
  29. Schlacher, T. A., B. Liddell, T. F. Gaston & M. Schlacher-Hoenlinger, 2005. Fish track wastewater pollution to estuaries. Oecologia 144: 570–584.CrossRefPubMedGoogle Scholar
  30. Sinnatamby, R. N., J. B. Dempson & M. Power, 2008. A comparison of muscle- and scale-derived δ13C and δ15N across three life-history stages of Atlantic salmon, Salmo salar. Rapid Communications in Mass Spectrometry 22: 2773–2778.CrossRefPubMedGoogle Scholar
  31. Syväranta, J., S. Vesala, M. Rask, J. Ruuhijärvi & R. I. Jones, 2008. Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia 600: 121–130.CrossRefGoogle Scholar
  32. Syväranta, J., J. Cucherousset, D. Kopp, A. Crivelli, R. Céréghino & F. Santoul, 2010. Dietary breadth and trophic position of introduced European catfish Silurus glanis in the River Tarn (Garonne River Basin), southwest France. Aquatic Biology 8: 137–144.CrossRefGoogle Scholar
  33. Tronquart, N. H., L. Mazeas, L. Reuilly-Manenti, A. Zahm & J. Belliard, 2012. Fish fins as non-lethal surrogates for muscle tissues in freshwater food web studies using stable isotopes. Rapid Communications in Mass Spectrometry 26: 1603–1608.CrossRefGoogle Scholar
  34. Vander Zanden, M. J., J. M. Casselman & J. B. Rasmussen, 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401: 464–467.CrossRefGoogle Scholar
  35. Vander Zanden, M. J., M. K. Clayton, E. K. Moody, C. T. Solomon & B. C. Weidel, 2015. Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS One 10: e0116182.CrossRefGoogle Scholar
  36. Vašek, M., M. Prchalová, J. Peterka, H. A. M. Ketelaars, A. J. Wagenvoort, M. Čech, V. Draštík, M. Říha, T. Jůza, M. Kratochvíl, T. Mrkvička, P. Blabolil, D. S. Boukal, J. Duras & J. Kubečka, 2013. The utility of predatory fish in biomanipulation of deep reservoirs. Ecological Engineering 52: 104–111.CrossRefGoogle Scholar
  37. Vašek, M., M. Prchalová, M. Říha, P. Blabolil, M. Čech, V. Draštík, J. Frouzová, T. Jůza, M. Kratochvíl, M. Muška, J. Peterka, Z. Sajdlová, M. Šmejkal, M. Tušer, L. Vejřík, P. Znachor, T. Mrkvička, J. Seďa & J. Kubečka, 2016. Fish community response to the longitudinal environmental gradient in Czech deep-valley reservoirs: implications for ecological monitoring and management. Ecological Indicators 63: 219–230.CrossRefGoogle Scholar
  38. Vejřík, L., E. Bouše, I. Matějíčková, D. Ricard & J. Kubečka, 2014. A Survey of Reproductive Biology and Population Size of Asp (Leuciscus aspius) in the Švihov (Želivka) Reservoir During the Period 2008–2014. Technical report. Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice (in Czech).Google Scholar
  39. Ventura, M. & E. Jeppesen, 2010. Evaluating the need for acid treatment prior to δ13C and δ15N analysis of freshwater fish scales: effects of varying scale mineral content, lake productivity and CO2 concentration. Hydrobiologia 644: 245–259.CrossRefGoogle Scholar
  40. Vollaire, Y., D. Banas, M. Thomas & H. Roche, 2007. Stable isotope variability in tissues of the Eurasian perch Perca fluviatilis. Comparative Biochemistry and Physiology, Part A 148: 504–509.CrossRefGoogle Scholar
  41. Wasko, A. P., C. Martins, C. Oliveira & F. Foresti, 2003. Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas 138: 161–165.CrossRefPubMedGoogle Scholar
  42. Willis, T. J., C. J. Sweeting, S. J. Bury, S. J. Handley, J. C. S. Brown, D. J. Freeman, D. G. Cairney & M. J. Page, 2013. Matching and mismatching stable isotope (δ13C and δ15N) ratios in fin and muscle tissue among fish species: a critical review. Marine Biology 160: 1633–1644.CrossRefGoogle Scholar
  43. Xu, J. & M. Zhang, 2012. Primary consumers as bioindicator of nitrogen pollution in lake planktonic and benthic food webs. Ecological Indicators 14: 189–196.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. Vašek
    • 1
  • L. Vejřík
    • 1
    • 2
  • I. Vejříková
    • 1
    • 2
  • M. Šmejkal
    • 1
  • R. Baran
    • 1
  • M. Muška
    • 1
  • J. Kubečka
    • 1
  • J. Peterka
    • 1
  1. 1.Biology Centre of the Czech Academy of SciencesInstitute of HydrobiologyČeské BudějoviceCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations