Advertisement

Hydrobiologia

, Volume 793, Issue 1, pp 199–212 | Cite as

Are aquatic assemblages from small water bodies more stochastic in dryer climates? An analysis of ostracod spring metacommunities

  • Melissa RosatiEmail author
  • Giampaolo Rossetti
  • Marco Cantonati
  • Valentina Pieri
  • Josep R. Roca
  • Francesc Mesquita-Joanes
SMALL WATER BODIES

Abstract

Metacommunity ecology describes community organisation considering both environmental and spatial processes. We tested the relative importance of environmental and spatial factors on spring ostracod assemblages from four European regions characterised by different climatic conditions (e.g. aridity). Pure and shared effects of environment and space were calculated using redundancy analysis and variation partitioning. Both environmental and spatial variables significantly explain assemblage variation, although with different relevance among areas. The amount of variation explained by environmental factors decreased with increasing climate aridity. The reduced size of spring habitats makes them prone to drying events, which are more frequent in dryer climates. Frequent disturbances may lead to local extinctions followed by colonisations from nearby sites, in a source–sink dynamics. Early recolonisation leads to random assemblages and reduces the match between organisms and environmental conditions. As a consequence, a low amount of community variation can be explained by environmental variables. Conversely, the settled communities from wetter climates best fit the ecological characteristics of sites, and deterministic processes, such as species sorting, dominate the assemblages. In conclusion, in the studied regions, ostracod communities from small water bodies of dryer climates seem to be mainly driven by stochastic dynamics when compared to more continental areas.

Keywords

Metacommunity analysis Spring Ostracod Climate Assembly rules 

Notes

Acknowledgements

Datasets originating from the following Projects contributed data to the present study: CRENODAT (funded by the Autonomous Province of Trento) and EBERs (funded by the Emilia Romagna Region). We would like to acknowledge the previous contribution of A. Baltanás and G. Tapia to the early versions of the Pyrenean and Valencian datasets. GR acknowledges the support of the LifeWatch network, and VP of the Interregional Association for Participation and Study in Agribusiness, Landscape and Environment Management. Finally, we would like to thank two anonymous reviewers and the Associate Editor S. M. Thomaz for their suggestions which really improved the manuscript.

Supplementary material

10750_2016_2938_MOESM1_ESM.tif (327 kb)
Supplementary material 1 (TIFF 326 kb) Map of Emilia Romagna springs. Colours and size of points represent the scores of the significant axis of RDA on spatial variables. Geographic scale of the map is given by a grid, which size in Km is given with the letter d in the upper part of the plot
10750_2016_2938_MOESM2_ESM.tif (418 kb)
Supplementary material 2 (TIFF 418 kb) Map of Alps springs. Colours and size of points represent the scores of the significant axis of RDA on spatial variables. Geographic scale of the map is given by a grid, which size in Km is given with the letter d in the upper part of the plot
10750_2016_2938_MOESM3_ESM.tif (509 kb)
Supplementary material 3 (TIFF 509 kb) Maps of Valencia springs. Colours and size of points represent the scores of each of the three significant axis of RDA on spatial variables. Geographic scale of the map is given by a grid, which size in Km is given with the letter d in the upper part of the plot
10750_2016_2938_MOESM4_ESM.tif (354 kb)
Supplementary material 4 (TIFF 354 kb) Map of Pyrenees springs. Colours and size of points represent the scores of the significant axis of RDA on spatial variables. Geographic scale of the map is given by a grid, which size in Km is given with the letter d in the upper part of the plot

References

  1. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Australian Ecology 26: 32–46.Google Scholar
  2. Anderson, M. J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253.CrossRefPubMedGoogle Scholar
  3. Anderson, M. J. & D. C. I. Walsh, 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs 83: 557–574.CrossRefGoogle Scholar
  4. A.P.H.A., A.W.W.A., W.E.F., 2005. Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation.Google Scholar
  5. Baltanás, A. & D. L. Danielopol, 2013. Body-–size distribution and biogeographical patterns in non-marine ostracods (Crustacea: Ostracoda). Biological Journal of the Linnean Society 109: 409–423.CrossRefGoogle Scholar
  6. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the Spatial Component of Ecological Variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  7. Borcard, D., P. Legendre, C. Avois-jacquet & H. Tuomisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.CrossRefGoogle Scholar
  8. Bottazzi, E., M. C. Bruno, M. Mazzini, V. Pieri & G. Rossetti, 2008. First report on Copepoda and Ostracoda (Crustacea) from northern Apenninic springs (N. Italy): a faunal and biogeographical account. Journal of Limnology 67(1): 56–63.CrossRefGoogle Scholar
  9. Bottazzi, E., M. C. Bruno, V. Pieri, A. Di Sabatino, L. Silveri, M. Carolli & G. Rossetti, 2011. Spatial and seasonal distribution of invertebrates in Northern Apennine rheocrene springs. Journal of Limnology 70: 77–92.CrossRefGoogle Scholar
  10. Boulton, A. J., S. E. Stibbe, N. B. Grimm & S. G. Fisher, 1991. Invertebrate recolonisation of small patches of defaunated hyporheic sediments in Sonoran desert stream. Freshwater Biology 26: 267–277.CrossRefGoogle Scholar
  11. Brochet, A. L., M. Gauthier-Clerc, M. Guillemain, H. Fritz, A. Waterkeyn, A. Baltanás & A. J. Green, 2010. Field evidence of dispersal of branchiopods, ostracods and bryozoans by teal (Anas crecca) in the Camargue (southern France). Hydrobiologia 637: 255–261.CrossRefGoogle Scholar
  12. Cantonati, M., E. Bertuzzi, A. Scalfi & V. Campana, 2009. The potential importance for spring conservation of residual habitats after flow capturing: A case study. Verhandlungen des Internationalen Verein Limnologie 30: 1267–1270.Google Scholar
  13. Cantonati, M., L. Füreder, R. Gerecke, I. Jüttner & E. J. Cox, 2012. Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshwater Science 31: 463–480.CrossRefGoogle Scholar
  14. Castillo-Escrivà, A., L. Valls, C. Rochera, A. Camacho & F. Mesquita-Joanes, 2015. Spatial and environmental analysis of an ostracod metacommunity from endorheic lakes. Aquatic Sciences. doi: 10.1007/s00027-015-0462-z.
  15. Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.CrossRefPubMedGoogle Scholar
  16. Curry, B. B., 1999. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats. Palaeogeography, Palaeoclimatology, Palaeoecology 148: 51–63.CrossRefGoogle Scholar
  17. Danielopol, D. L., P. Marmonier, A. J. Boulton & G. Bonaduce, 1994. World subterranean ostracod biogeography: dispersal or vicariance. Hydrobiologia 287: 119–129.CrossRefGoogle Scholar
  18. Dray, S., P. Legendre & G. Blanchet, 2011. packfor: Forward Selection with permutation (Canoco p.46). R package version 0.0-8/r100. http://R-Forge.R-project.org/projects/sedar/.
  19. Escrivà, A., J. M. Poquet & F. Mesquita-Joanes, 2015. Effects of environmental and spatial variables on lotic ostracod metacommunity structure in the Iberian Peninsula. Inland Waters 5: 283–294.CrossRefGoogle Scholar
  20. Forester, R. M., 1986. Determination of the dissolved anion composition of ancient lakes from fossil ostracodes. Geology 14: 796–798.CrossRefGoogle Scholar
  21. Gifré, J., X. D. Quintana, R. de la Barrera, M. Martinoy & E. Marquès, 2002. Ecological factors affecting ostracod distribution in lentic ecosystems in the Empordá Wetlands (NE Spain). Archiv für Hydrobiologie 154(3): 499–514.CrossRefGoogle Scholar
  22. Glazier, D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwater Biology 26: 527–542.CrossRefGoogle Scholar
  23. Grönroos, M., J. Heino, T. Siqueira, V. L. Landeiro, J. Kotanen & L. M. Bini, 2013. Metacommunity structuring in stream networks: Roles of dispersal mode, distance type, and regional environmental context. Ecology and Evolution 3: 4473–4487.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Heino, J. & H. Mykrä, 2008. Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecological Entomology 33: 614–622.CrossRefGoogle Scholar
  25. Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.CrossRefGoogle Scholar
  26. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.CrossRefGoogle Scholar
  27. Horsák, M., M. Hájek, D. Spitale, P. Hájková, D. Dítě & J. C. Nekola, 2012. The age of island-like habitats impacts habitat specialist species richness. Ecology 93: 1106–1114.CrossRefPubMedGoogle Scholar
  28. Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princenton University Press, Princeton.Google Scholar
  29. Ilmonen, J., H. Mykrä, R. Virtanen, L. Paasivirta & T. Muotka, 2012. Responses of spring macroinvertebrate and bryophyte communities to habitat modification: community composition, species richness, and red-listed species. Freshwater Science 31: 657–667.CrossRefGoogle Scholar
  30. Jones, P. D. & I. Harris, 2008. Climatic Research Unit (CRU) time-series datasets of variations in climate with variations in other phenomena. NCAS British Atmospheric Data Centre, 2015. http://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d.
  31. Külköylüoğlu, O., M. Yavuzatmaca, N. Sarı & D. Akdemir, 2016. Elevational distribution and species diversity of freshwater Ostracoda (Crustacea) in Çankırı region (Turkey). Journal of Freshwater Ecology 31: 219–230.CrossRefGoogle Scholar
  32. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  33. Legendre, P. & L. F. Legendre, 2012. Numerical Ecology, Vol. 24. Elsevier, Oxford.Google Scholar
  34. Legendre, P., D. Borcard, F. G. Blanchet & S. Dray, 2012. PCNM: MEM spatial eigenfunction and principal coordinate analyses. R package version 2.1-2/r106. http://R-Forge.R-project.org/projects/sedar/.
  35. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  36. Lepori, F. & B. Malmqvist, 2009. Deterministic control on community assembly peaks at intermediate levels of disturbance. Oikos 118: 471–479.CrossRefGoogle Scholar
  37. Malmqvist, B., C. Meisch & A. N. Nilsson, 1997. Distribution patterns of freshwater Ostracoda (Crustacea) in the Canary Islands with regards to habitat use and biogeography. Hydrobiologia 347: 159–170.CrossRefGoogle Scholar
  38. Marchiani, C. & G. Venturelli, 2006. Studio pilota interdisciplinare per la valutazione e la gestione delle risorse idriche della Riserva Naturale Monte Prinzera. Ricerca realizzata nell’ambito del Programma Regionale di Investimenti nelle Aree Protette 2001–2003.Google Scholar
  39. Marmonier, P. & C. des Châtelliers, 1992. Biogeography of the benthic and interstitial living ostracods (Crustacea) of the Rhône River (France). Journal of Biogeography 19: 693–704.CrossRefGoogle Scholar
  40. Martens, K., I. Schön, C. Meisch & D. J. Horne, 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193.CrossRefGoogle Scholar
  41. Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. Spektrum, Heidelberg, Berlin.Google Scholar
  42. Mesquita-Joanes, F., A. J. Smith & F. Viehberg, 2012. The ecology of Ostracoda across levels of biological organisation from individual to ecosystem: a review of recent developments and future potential. In Horne, D. J., J. A. Holmes, J. Rodríguez-Lázaro & F. Viehberg (eds), Ostracoda as Proxies for Quaternary Climate Change, Vol. 17., Developments in Quaternary Science Series Elsevier, Amsterdam: 15–35.CrossRefGoogle Scholar
  43. Mezquita, F., G. Tapia & J. R. Roca, 1999. Ostracoda from springs on the eastern Iberian Peninsula: ecology, biogeography and palaeolimnological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 148: 65–85.CrossRefGoogle Scholar
  44. Mezquita, F., H. I. Griffiths, M. I. Dominguez & M. A. Lozano-Quilis, 2001. Ostracoda (Crustacea) as ecological indicators: a case study from Iberian Mediterranean brooks. Archiv für Hydrobiologie 150: 545–560.CrossRefGoogle Scholar
  45. Mezquita, F., J. R. Roca, J. M. Reed & G. Wansard, 2005. Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: Examples using Iberian data. Palaeogeography, Palaeoclimatology, Palaeoecology 225: 93–117.CrossRefGoogle Scholar
  46. Michelson, A. V., L. E. Park Boush & J. J. Pan, 2016. Discerning patterns of diversity from biogeographical distributions: testing models of metacommunity dynamics using non-marine ostracodes from San Salvador Island, Bahamas. Hydrobiologia 766: 305–319.CrossRefGoogle Scholar
  47. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. vegan: Community Ecology Package. R package version 2.0-10. http://CRAN.Rproject.org/package=vegan.
  48. Pieri, V., K. Martens, L. Naselli-flores, F. Marrone & G. Rossetti, 2006. Distribution of recent ostraods in inland waters of Sicily (Southern Italy). Journal of Limnology 65: 1–8.CrossRefGoogle Scholar
  49. Pieri, V., C. Caserini, S. Gomarasca, K. Martens & G. Rossetti, 2007. Water quality and diversity of the recent ostracod fauna in lowland springs from Lombardy (northern Italy). Hydrobiologia 585: 79–87.CrossRefGoogle Scholar
  50. Poff, N. L., 1997. Landscape filters and species traits: toward mechanistic understanding and prediction in stream Ecology. Journal of North American Benthological Society 16: 391–409.CrossRefGoogle Scholar
  51. Poquet, J. M. & F. Mesquita-Joanes, 2011. Combined effects of local environment and continental biogeography on the distribution of Ostracoda. Freshwater Biology 56: 448–469.CrossRefGoogle Scholar
  52. QGIS Development Team, 2013. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Version 2.0.1-Dufour. http://qgis.osgeo.org.
  53. R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/.
  54. Rádková, V., J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka & M. Horsák, 2014. The role of dispersal mode and habitat specialisation in metacommunity structuring of aquatic macroinvertebrates in isolated spring fens. Freshwater Biology 59: 2256–2267.CrossRefGoogle Scholar
  55. Reeves, J. M., P. De Deckker & S. A. Halse, 2007. Groundwater Ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585: 99–118.CrossRefGoogle Scholar
  56. Roca, J. R., 1990a. Tipología físico-química de las fuentes de los Pirineos Centrales: síntesis regional. Limnetica 6: 57–78.Google Scholar
  57. Roca, J. R., 1990b. Poblamiento de las fuentes de los Pirineos Centrales: Faunística y Ecología. Ph.D. Thesis, University of Barcelona.Google Scholar
  58. Roca, J. R. & A. Baltanás, 1993. Ecology and distribution of Ostracoda in Pyrenean springs. Journal of Crustacean Biology 13: 165–174.CrossRefGoogle Scholar
  59. Rosati, M., M. Cantonati, R. Primicerio & G. Rossetti, 2014. Biogeography and relevant ecological drivers in spring habitats: A review on ostracods of the Western Palearctic. International Review of Hydrobiology 99: 409–424.CrossRefGoogle Scholar
  60. Rossetti, G., V. Pieri & K. Martens, 2005. Recent ostracods (Crustacea, Ostracoda) found in lowland springs of the provinces of Piacenza and Parma (Northern Italy). Hydrobiologia 542: 287–296.CrossRefGoogle Scholar
  61. Sambugar, B., G. Dessi, A. Sapelza, A. Stenico, B. Thaler & A. Veneri, 2006. Fauna sorgentizia in Alto Adige. Provincia Autonoma di Bolzano, Alto Adige.Google Scholar
  62. Soininen, J., J. J. Korhonen, J. Karhu & A. Vetterli, 2011. Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnology and Oceanography 56: 508–520.CrossRefGoogle Scholar
  63. Stoch, F., R. Gerecke, V. Pieri, G. Rossetti & B. Sambugar, 2011. Exploring species distribution of spring meiofauna (Annelida, Acari, Crustacea) in the south-eastern Alps. Journal of Limnology 70(supplement 1): 65–76.CrossRefGoogle Scholar
  64. Valls, L., A. Castillo-Escrivà, F. Mesquita-Joanes & X. Armengol, 2016. Human-mediated dispersal of aquatic invertebrates with waterproof footwear. Ambio 45: 99–109.CrossRefPubMedGoogle Scholar
  65. Van der Kamp, G., 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. Journal of the Kansas Entomological Society 68: 4–17.Google Scholar
  66. Van der Meeren, T., J. E. Almendinger, E. Ito & K. Martens, 2010. The ecology of ostracodes (Ostracoda, Crustacea) in western Mongolia. Hydrobiologia 641: 253–273.CrossRefGoogle Scholar
  67. Wilson, D. S., 1992. Complex interactions in metacommunities, with implications for biodiversity and higher level of selection. Ecology 73: 1984–2000.CrossRefGoogle Scholar
  68. Winegardner, A. K., B. K. Jones, I. S. Y. Ng, T. Siqueira & K. Cottenie, 2012. The terminology of metacommunity ecology. Trends in Ecology & Evolution 27: 253–254.CrossRefGoogle Scholar
  69. Zhai, M., O. Nováček, D. Výravský, V. Syrovátka, J. Bojková & J. Helešic, 2015. Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. Hydrobiologia 745: 225–239.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Melissa Rosati
    • 1
    Email author
  • Giampaolo Rossetti
    • 1
  • Marco Cantonati
    • 2
  • Valentina Pieri
    • 1
  • Josep R. Roca
    • 3
  • Francesc Mesquita-Joanes
    • 4
  1. 1.Laboratory of Aquatic Ecology, Department of Life SciencesUniversity of ParmaParmaItaly
  2. 2.Limnology and Phycology SectionMuseo delle Scienze-MUSETrentoItaly
  3. 3.Departament de Territori i SostenibilitatGeneralitat de CatalunyaLleidaSpain
  4. 4.Cavanilles Institute of Biodiversity and Evolutionary Biology and Department of Microbiology and EcologyUniversity of ValenciaBurjassotSpain

Personalised recommendations