Hydrobiologia

, Volume 785, Issue 1, pp 219–232 | Cite as

Response of benthic macroinvertebrate assemblages to round (Neogobius melanostomus, Pallas 1814) and tubenose (Proterorhinus semilunaris, Heckel 1837) goby predation pressure

  • Libor Mikl
  • Zdeněk Adámek
  • Lucie Všetičková
  • Michal Janáč
  • Kevin Roche
  • Luděk Šlapanský
  • Pavel Jurajda
Primary Research Paper

Abstract

One of the main assumed impacts of invasive gobies is predation on benthic macroinvertebrates. Despite numerous dietary studies, however, quantitative evaluations of impact in European river systems are scarce. Here, we investigate the impact of tubenose (Proterorhinus semilunaris, Heckel 1837) and round (Neogobius melanostomus, Pallas 1814) gobies on macroinvertebrates in a lowland river (River Dyje, Czech Republic) by allowing and preventing gobiid access to rip-rap substrate naturally colonised by invertebrates at two sites (Site 1—tubenose goby only, Site 2—tubenose and round gobies). Gobies had a negative impact on invertebrates at both sites, with overall invertebrate density reduced by 15% (ca. 17.9 g m−2 per year) at Site 1 and 36% (ca. 23.6 g m−2 per year) at Site 2. Both species showed increased impact in summer and ingested larger invertebrates preferentially, resulting in an overall reduction in invertebrate body size. Tubenose gobies had a significant impact on Annelida, Gastropoda, Crustacea and Ephemeroptera nymphs, while tubenose and round goby together impacted Annelida, Bivalvia (Dreissena), Gastropoda, Crustacea, Ephemeroptera nymphs, Odonata nymphs and Chironomidae larvae. Our results confirm that round and tubenose gobies can have a significant negative impact on aquatic invertebrate density and community composition.

Keywords

Invasive species Gobies Macroinvertebrates Impact European rivers Diet 

Supplementary material

10750_2016_2927_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. Adámek, Z., J. Andreji & J. M. Gallardo, 2007. Food habits of four bottom-dwelling gobiid species at the confluence of the Danube and Hron rivers (South Slovakia). International Review of Hydrobiology 92: 554–563.CrossRefGoogle Scholar
  2. Adámek, Z., P. Jurajda, V. Prášek & I. Sukop, 2010. Seasonal diet pattern of non-native tubenose goby (Proterorhinus semilunaris) in lowland reservoir (Mušov, Czech Republic). Knowledge and Management of Aquatic Ecosystems 397: 02.CrossRefGoogle Scholar
  3. Adámek, Z., S. Zahrádková, P. Jurajda, I. Bernardová, Z. Jurajdová, M. Janáč & D. Němejcová, 2013. The response of benthic macroinvertebrate and fish assemblages to human impact along the lower stretch of the rivers Morava and Dyje (Danube basin, Czech Republic). Croatian Journal of Fisheries 71: 93–115.CrossRefGoogle Scholar
  4. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  5. Balshine, S., A. Verma, V. Chant & T. Theysmeyer, 2005. Comparative interactions between round goby and logperch. Journal of Great Lakes Research 31: 68–77.CrossRefGoogle Scholar
  6. Barton, D. R., A. J. Reagan, L. Campbell, J. Petruniak & M. Patterson, 2005. Effect of round gobies (Neogobius melanostomus) on Dreissenid mussels and other Invertebrates in Eastern Lake Erie 2002–2004. Journal of Great Lakes Research 31: 252–261.CrossRefGoogle Scholar
  7. Bergstrom, M. A. & A. F. Mensinger, 2009. Interspecific resource competition between the invasive round goby and three native species: logperch, slimy sculpin and spoonhead sculpin. Transactions of the American Fisheries Society 138: 1009–1017.CrossRefGoogle Scholar
  8. Borcherding, J., M. Dolina, L. Heermann, P. Knutzen, S. Krüger, S. Matern, R. van Treeck & S. Gertzen, 2013. Feeding and niche differentiation in three invasive gobies in the Lower Rhine (Germany). Limnologica 43: 49–58.CrossRefGoogle Scholar
  9. Brandner, J., K. Auerswald, A. F. Cerwenka, U. K. Schliewen & J. Geist, 2013. Comparative feeding ecology of invasive Ponto–Caspian gobies. Hydrobiologia 703: 113–131.CrossRefGoogle Scholar
  10. Broza, P., T. Erös & N. Oertel, 2009. Food resource partitioning between two invasive gobiid species (pisces, Gobiidae) in the littoral zone of the river Danube, Hungaria. International Review of Hydrobiology 94: 609–621.CrossRefGoogle Scholar
  11. Brush, J. M., A. T. Fisk, N. E. Hussey & T. B. Johnson, 2012. Spatial and seasonal variability in the diet of round goby (Neogobius melanostomus): stable isotopes indicate that stomach contents overestimate the importance of dreissenids. Canadian Journal of Fisheries and Aquatic Sciences 69: 573–586.CrossRefGoogle Scholar
  12. Copp, G. H., V. Kováč, I. Zweimüller, A. Dias, M. Nascimento & M. Balážová, 2008. Preliminary study of dietary interaction between invading Ponto–Caspian Gobies and some native fish species in the river Danube near Bratislava (Slovakia). Aquatic invasions 2: 189–196.Google Scholar
  13. Corkum, L. D., M. R. Sapota & K. E. Skóra, 2004. The round goby Neogobius melanostomus, fish invader on both sides of the Atlantic Ocean. Biological Invasions 6(2): 173–181.CrossRefGoogle Scholar
  14. Diggins, T. P., J. Kaur, R. K. Chakraborti & J. V. DePinto, 2002. Diet choice by exotic round goby (Neogobius melanostomus) as influence by prey motility and environmental complexity. Journal of Great Lakes Research 28: 411–420.CrossRefGoogle Scholar
  15. Erös, T., B. Tóth, A. Sevcsik & D. Schmera, 2008. Comparison of fish assemblage diversity in natural and artificial rip-rap habitats in the littoral zone of large river (River Danube, Hungary). International Review of Hydrobiology 93: 350–357.CrossRefGoogle Scholar
  16. Harka, Á. & P. Bíró, 2007. New pattern in Danubian distribution of Ponto–Caspian gobies a result of global climatic change and or canalization. Electronic Journal of Ichthyology 1: 1–14.Google Scholar
  17. Hôrková, K. & V. Kováč, 2014. Different life-history of native and invasive Neogobius melanostomus and the possible role of phenotypic plasticity in the species invasion success. Knowledge and Management of Aquatic Ecosystems 421: 01.CrossRefGoogle Scholar
  18. Janáč, M., Z. Valová & P. Jurajda, 2012. Range expansion and habitat preferences of nonnative 0 + tubenose goby (Proterorhinus semilunaris) in two lowland rivers in the Danube basin. Fundamental and Applied Limnology/Archiv für Hydrobiologie 181: 73–85.CrossRefGoogle Scholar
  19. Janáč, M., P. Jurajda, L. Kružíková, K. Roche & V. Prášek, 2013a. Reservoir to river passage of age-0 + year fishes, indication of a dispersion pathway for a non-native species. Journal of Fish Biology 82: 994–1010.CrossRefPubMedGoogle Scholar
  20. Janáč, M., L. Šlapanský, Z. Valová & P. Jurajda, 2013b. Downstream drift of round goby (Neogobius melanostomus) and tubenose goby (Proterorhinus semilunaris) in their non-native area. Ecology of Freshwater Fish 22: 430–438.CrossRefGoogle Scholar
  21. Jurajda, P., J. Černý, M. Polačik, Z. Valová, M. Janáč, R. Blažek & M. Ondračková, 2005. The recent distribution and abundance of non-native Neogobius fishes in the Slovak section of the River Danube. Journal of Applied Ichthyology 21: 319–323.CrossRefGoogle Scholar
  22. Kipp, R. & A. Ricciardi, 2012. Impact of the Eurasian round goby (Neogobius melanostomus) on benthic communities in the upper St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences 69: 469–486.CrossRefGoogle Scholar
  23. Krakowiak, P. J. & C. M. Pennuto, 2008. Fish and macroinvertebrate communities in tributary stream of Eastern Lake Erie with and without round gobies (Neogobius melanostomus, Pallas 1814). Journal of Great Lakes Research 34: 675–689.CrossRefGoogle Scholar
  24. Kuhns, L. M. & M. B. Berg, 1999. Benthic invertebrate community responses to round goby (Neogobius melanostomus) and zebra mussel (Dreissena polymorpha) invasion in southern Lake Michigan. Journal of Great Lakes Research 25: 910–917.CrossRefGoogle Scholar
  25. Lederer, A., J. Massart & J. Janssen, 2006. Impact of round gobies (Neogobius melanostomus) on Driessenids (Dreissena polymorpha and Dreissena bugensis) and the associated macroinvertebrate community across an invasion front. Journal of Great Lakes Research 32: 1–10.CrossRefGoogle Scholar
  26. Lederer, A., J. Janssen, T. Reed & A. Wolf, 2008. Impact of introduced round goby (Apollonia melanostoma) on driessenids (Driessena polymorpha and Driessena bugensis) and on macroinvertebrates community between 2003 and 2006 in the littoral zone of Green Bay, Lake Michigan. Journal of Great Lakes Research 34: 690–697.CrossRefGoogle Scholar
  27. Lusk, S. & K. Halačka, 1995. The first finding of the tubenose goby Proterorhinus semilunaris, in Czcech Republic. Folia Zologica 44(1): 90–92.Google Scholar
  28. Lusk, S., V. Lusková & L. Hanel, 2010. Alien fish species in the Czech Republic and their impact on the native fish fauna. Folia Zoologica 59(1): 57–72.Google Scholar
  29. Lynch, M. P. & A. F. Mensinger, 2013. Temporal patterns in growth and survival of the round goby Neogobius melanostomus. Journal of Fish Biology. 82: 111–124.CrossRefPubMedGoogle Scholar
  30. Moorhouse, T. P., A. E. Poole, L. C. Evans, D. C. Bradley & D. W. Macdonald, 2014. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases number and taxon richness of macroinvertebrate species. Ecology and Evolution 4(4): 494–504.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pennuto, C. M., P. J. Krakowiak & C. E. Janik, 2010. Seasonal abundance, diet and energy consumption of round gobies (Neogobius melanostomus) in Lake Erie tributary streams. Ecology of Freshwater Fish 19: 206–215.CrossRefGoogle Scholar
  32. Polačik, M., M. Janáč, P. Jurajda, Z. Adámek, M. Ondračková, T. Trichkova & M. Vassilev, 2009. Invasive gobies in the Danube: invasion success facilitated by availability and selection of superior food resources. Ecology of Freshwater Fish 18: 640–649.CrossRefGoogle Scholar
  33. Prášek, V. & P. Jurajda, 2005. Expansion of Proterorhinus marmoratus in the Morava River basin (Czech Republic, Danube R. watershed). Folia Zoologica 54(1–2): 189–192.Google Scholar
  34. R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  35. Ray, W. J. & L. D. Corkum, 1997. Predation of zebra mussels by round gobies, Neogobius melanostomus. Environmental Biology of Fishes 50: 267–273.CrossRefGoogle Scholar
  36. Roche, K., M. Janáč & P. Jurajda, 2013. A review of Gobiid expansion along the Danube-Rhine corridor – geopolitical change as a driver for invasion. Knowledge and Management of Aquatic Ecosystems 411: 01.CrossRefGoogle Scholar
  37. Semenchenko, V., J. Grabowska, M. Grabowski, V. Rizevsky & M. Pluta, 2011. Non-native fish in Belarusian and Polish areas of the European central invasion corridor. Oceanological and Hydrobiological Studies 40: 57–67.CrossRefGoogle Scholar
  38. Sukop, I., 2010. Vliv vodohospodářských úprav v dolním Podyjí na vodní biocenózy (Influence of water management in lowland region of the Dyje River on water biocenoses). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis LVIII(4): 269–276.CrossRefGoogle Scholar
  39. Števove, B. & V. Kováč, 2013. Do invasive bighead goby Neogobius kessleri and round goby N. melanostomus (Teleostei, Gobiidae) compete for food. Knowledge Management Aquatic Ecosystems. 410: 08.CrossRefGoogle Scholar
  40. Taraborelli, A. C., M. G. Fox, T. B. Johnson & T. Schaner, 2010. Round bogy (Neogobius melanostomus) population structure, biomass, prey consumption and mortality from predation in the Bay of Quinte, Lake Ontario. Journal of Great Lakes Research 36: 625–632.CrossRefGoogle Scholar
  41. Valová, Z., M. Konečná, M. Janáč & P. Jurajda, 2015. Population and reproductive characteristics of a non-native western tubenose goby (Proterorhinus semilunaris) population unaffected by gobiid competitors. Aquatic Invasions 10(1): 57–68.CrossRefGoogle Scholar
  42. Vašek, M., L. Všetičková, K. Roche & P. Jurajda, 2014. Diet of two invading gobiid species (Protherorhinus semilunaris and Neogobius melanostomus) during the breeding and hatching season: No field evidence of extensive predation on fish eggs and fry. Limnologica 46: 31–36.CrossRefGoogle Scholar
  43. Všetičková, L., M. Janáč, M. Vašek, K. Roche & P. Jurajda, 2014. Non-native western tubenose gobies Proterorhinus semilunaris show distinct site, sex and age-related differences in diet. Knowledge and Management of Aquatic Ecosystems 414: 10.Google Scholar
  44. Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effect models and extension in ecology with R. Springer, New York: 574.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Libor Mikl
    • 1
    • 2
  • Zdeněk Adámek
    • 1
  • Lucie Všetičková
    • 1
  • Michal Janáč
    • 1
  • Kevin Roche
    • 1
  • Luděk Šlapanský
    • 1
    • 2
  • Pavel Jurajda
    • 1
  1. 1.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations