, Volume 796, Issue 1, pp 287–307 | Cite as

Seasonal variability in the structure and functional diversity of psammic rotifer communities: role of environmental parameters

  • Külli LokkoEmail author
  • Taavi Virro
  • Jonne Kotta


Data on the variability in structure and functioning of interstitial rotifer assemblages are rare; however, this knowledge is essential for understanding their role in the interstitial food web. In the present study, we characterized psammic rotifer communities in terms of dominance structure, trophic traits, taxonomic and functional diversity at a seasonal scale in freshwater lakes across Estonia and coastal beaches of the Baltic Sea. A total of 42 rotifer species were found from the coastal beaches and 66 species from the lakes. Functional indices did not exhibit smaller seasonal variability and neither did they respond better to changes in the environment compared to taxonomic indices. However, there were differences how environmental variables affected these two broad groups of response variables. The taxonomy-based indices of rotifer communities were primarily driven by seasonal temperature regime, sediment characteristics and anthropogenic stressors, whereas the trait-based indices were a function of ecosystem types (freshwater or brackish water). The functional indices of the psammic rotifer communities strongly distinguished between freshwater and brackish habitats indicating that rotifers have different functional roles in food webs in fresh and brackish water environments.


Psammon Rotifers Spatial patterns Seasonal dynamics Traits Functional diversity 



Funding for this research was provided by Institutional research funding IUT02-20 of the Estonian Research Council and the BONUS project BIO-C3, funded jointly from the European Union’s Seventh Programme for research, technological development and demonstration and from the Estonian Research Council.

Supplementary material

10750_2016_2923_MOESM1_ESM.doc (5.3 mb)
Supplementary material 1 (DOC 5464 kb)


  1. Agasild, H., P. Zingel, I. Tõnno, J. Haberman & T. Nõges, 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584: 167–177.CrossRefGoogle Scholar
  2. Almroth-Rosell, E., A. Tengberg, S. Andersson, A. Apler & P. O. J. Hall, 2012. Effects of simulated natural and massive resuspension on benthic oxygen, nutrient and dissolved inorganic carbon fluxes in Loch Creran, Scotland. Journal of Sea Research 72: 38–48.CrossRefGoogle Scholar
  3. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Ltd., Plymouth.Google Scholar
  4. Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia 255: 231–246.CrossRefGoogle Scholar
  5. Bērziņš, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.CrossRefGoogle Scholar
  6. Bielańska-Grajner, I., 2001. The psammic rotifer structure in three Lobelian Polish lakes differing in pH. Hydorobiologia 446(447): 149–153.CrossRefGoogle Scholar
  7. Bielańska-Grajner, I., 2005. The influence of biotic and abiotic factors on psammic rotifers in artificial and natural lakes. Hydrobiologia 546: 431–440.CrossRefGoogle Scholar
  8. Blott, S. J. & K. Pye, 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26: 1237–1248.CrossRefGoogle Scholar
  9. Bogdan, K. G. & J. J. Gilbert, 1984. Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Science of the United States of America 81: 6427–6431.CrossRefGoogle Scholar
  10. Botta-Dukát, Z., 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533–540.CrossRefGoogle Scholar
  11. Cadotte, M. W., K. Carscadden & N. Mirotchnick, 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079–1087.CrossRefGoogle Scholar
  12. Covazzi Harriague, A., C. Misic, I. Valentini, E. Polidori, G. Albertelli & A. Pusceddu, 2013. Meio- and macrofauna communities in three sandy beaches of the northern Adriatic Sea protected by artificial reefs. Chemistry and Ecology 29: 181–195.CrossRefGoogle Scholar
  13. Cowan, J. W., J. R. Pennock & W. R. Boynton, 1996. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): regulating factors and ecological significance. Marine Ecology Progress Series 141: 229–245.CrossRefGoogle Scholar
  14. De Smet, W. H., 1996. Rotifera 4: The Proalidae (Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 9. SPB Academic Publishing bv, Amsterdam.Google Scholar
  15. De Smet, W. H. & R. Pourriot, 1997. Vol. 5: Rotifera. The Dicranophoridae (Monogononta) and the Ituridae (Monogononta): Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 12. SPB Academic Publishing bv, Amsterdam.Google Scholar
  16. Ejsmont-Karabin, J., 2001. Psammon rotifers in two lakes of different trophy – their abundance, species structure and role in phosphorous cycling. Verhandlungen des Internationalen Verein Limnologie 27: 3856–3859.Google Scholar
  17. Ejsmont-Karabin, J., 2003. Rotifera of lake psammon: community structure versus trophic state of lake waters. Polish Journal of Ecology 51: 5–35.Google Scholar
  18. Ejsmont-Karabin, J., 2005. Short time-response of psammic communities of Rotifera to abiotic changes in their habitat. Hydorobiologia 546: 423–430.CrossRefGoogle Scholar
  19. Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J Mc C Overton, A. T. Peterson, S. J. Phillips, K. S. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberoń, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.CrossRefGoogle Scholar
  20. Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–881.CrossRefPubMedGoogle Scholar
  21. Fenchel, T., 1969. The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna commuities with special reference to the ciliated protozoa. Ophelia 6: 1–182.CrossRefGoogle Scholar
  22. Fontaneto, D., W. H. De Smet & C. Ricci, 2006. Rotifers in saltwater environments, re-evaluation of an inconspicuous taxon. Journal of the Marine Biological Association of the United Kingdom 86: 623–656.CrossRefGoogle Scholar
  23. Giere, O., 2009. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments, 2nd ed. Springer-Verlag, Berlin-Heidelberg.Google Scholar
  24. Gingold, R., M. Mundo-Ocampo, O. Holovachov & A. Rocha-Olivares, 2010. The role of habitat heterogeneity in structuring the community of intertidal free-living marine nematodes. Marine Biology 157: 1741–1753.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hansen, P. J., P. K. Bjørnsen & B. W. Hansen, 1997. Zooplankton grazing and growth: scaling within the 2–2000-μm body size range. Limnology and Oceanography 42: 687–704.CrossRefGoogle Scholar
  26. Hastie, T. J., R. J. Tibshirani & J. H. Friedman, 2001. The Elements of Statistical Learning. Springer-Verlag, New-York.CrossRefGoogle Scholar
  27. HELCOM, 2003. The Baltic marine environment 1999–2002. Baltic Sea Environment Proceedings 87: 46 pp.Google Scholar
  28. Hijmans, R. J., S. Phillips, J. Leathwick & J. Elith, 2014. dismo: species distribution modeling. R package version 1.0-5.
  29. Hillbricht-Ilkowska, A., 1983. Response of planktonic rotifers to the eutrophication process and to the autumnal shift of blooms in lake Biwa, Japan. I. Changes in abundance and composition of rotifers. Japanese Journal of Limnology 44: 93–106.CrossRefGoogle Scholar
  30. Ikauniece, A., 2001. Long-term abundance dynamics of coastal zooplankton in the Gulf of Riga. Environment International 26: 175–181.CrossRefPubMedGoogle Scholar
  31. Jansson, A.-M., 1967. The food-web of the Cladophora-belt fauna. Helgoländer wissenschaftliche Meeresuntersuchungen 15: 574–588.CrossRefGoogle Scholar
  32. Jersabek, C. D. & M. F. Leitner, 2013. The Rotifer World Catalog. World Wide Web electronic publication.
  33. Jersabek, C. D., W. H. De Smet, C. Hinz, D. Fontaneto, C. G. Hussey, E. Michaloudi, R. L. Wallace & H. Segers, 2015. List of available names in zoology, candidate part Phylum Rotifera, species-group names established before 1 January 2000. (1) Completely defined names (A-list), and (2) incompletely defined names, with no types known (B-list): 335 pp. Accessed 27 June 2016.
  34. Jordan, S., D. K. Shiozawa & J. M. Schmid-Araya, 1999. Benthic invertebrates of a large, sandy river system: the Green and Colorado Rivers of Canyonlands National Park, Utah. Archiv Fur Hydrobiologie 147: 91–127.CrossRefGoogle Scholar
  35. Koste, W. & R. J. Shiel, 1987. Rotifera from Australian inland waters. II. Epiphanidae and Brachionidae (Rotifera: Monogononta). Invertebrate Taxonomy 7: 949–1021.CrossRefGoogle Scholar
  36. Kutikova, L. A., 1970. Rotifers (Rotatoria) of the Fauna of the USSR. Eurotatoria (Ploimida, Monimotrochida, Paedotrochida). Nauka, Leningrad. (in Russian).Google Scholar
  37. Laliberté, E., P. Legendre & B. Shipley, 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.Google Scholar
  38. Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.CrossRefPubMedGoogle Scholar
  39. Lapesa, S., T. W. Snell, D. M. Fields & M. Serra, 2002. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshwater Biology 47: 1685–1695.CrossRefGoogle Scholar
  40. Lepš, J., F. De Bello, S. Lavorel & S. Berman, 2006. Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78: 481–501.Google Scholar
  41. Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28.CrossRefGoogle Scholar
  42. Litchman, E., M. D. Ohman & T. Kiorboe, 2013. Trait-based approaches to zooplankton communities. Journal of Plankton Research 35: 473–484.CrossRefGoogle Scholar
  43. Litton Jr., J. R., 1983. Collections on Planktonic and Interstitial Marine Rotifers from Puerto Rico. Proceedings of the Indiana Academy of Science 93: 475–478.Google Scholar
  44. Lokko, K. & T. Virro, 2014. The structure of psammic rotifer communities in two boreal lakes with different trophic conditions: Lake Võrtsjärv and Lake Saadjärv (Estonia). Oceanological and Hydrobiological Studies 43: 49–55.CrossRefGoogle Scholar
  45. Lokko, K., T. Virro & J. Kotta, 2014a. Taxonomic composition of zoopsammon in the fresh and brackish waters of Estonia, the Baltic province ecoregion of Europe. Estonian Journal of Ecology 63: 242–261.CrossRefGoogle Scholar
  46. Lokko, K., J. Kotta & T. Virro, 2014b. Seasonal trends in horizontal and vertical patterns of zoopsammon in the brackish Baltic Sea in relation to key environmental variables. Proceedings of the Biological Society of Washington 127: 58–77.CrossRefGoogle Scholar
  47. Loopmann, A., 1984. Suuremate Eesti järvede morfomeetrilised andmed ja veevahetus (Morphometrical data and water exchange of larger Estonian lakes). Eesti NSV teaduste Akadeemia, Tallinn: 150 pp (in Estonian).Google Scholar
  48. Mäemets, A., 1977. Eesti NSV järved ja nende kaitse (Lakes of the Estonian S.S.R. and their protection). Valgus, Tallinn: 264 pp (in Estonian).Google Scholar
  49. Mallin, M. A. & H. W. Paerl, 1994. Planktonic trophic transfer in an estuary: seasonal, diel and community structure effects. Ecology 75: 2168–2184.CrossRefGoogle Scholar
  50. McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.CrossRefGoogle Scholar
  51. Mouillot, D., 2007. Niche-assembly vs. dispersal-assembly rules in coastal fish metacommunities: implications for management of biodiversity in brackish lagoons. Journal of Applied Ecology 44: 760–767.CrossRefGoogle Scholar
  52. Muirhead, J. R., J. Ejsmont-Karabin & H. J. Macisaac, 2006. Quantifying rotifer species richness in temperate lakes. Freshwater Biology 51: 1696–1709.CrossRefGoogle Scholar
  53. Nogrady, T., R. L. Wallace & T. W. Snell, 1993. Rotifera. : Volume 1: Biology, Ecology and Systematics: Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 4. SPB Academic Publishing bv, The Hague.Google Scholar
  54. Nogrady, T., R. Pourriot & H. Segers, 1995. Rotifera. Vol. 3: The Notommatidae and the Scaridiidae. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 8. SPB Academic Publishing bv, Amsterdam.Google Scholar
  55. Nordstrom, K. F. & N. L. Jackson, 2012. Physical processes and landforms on beaches in short fetch environments in estuaries, small lakes and reservoirs: a review. Earth-Science Reviews 111: 232–247.CrossRefGoogle Scholar
  56. Nordström, M. C., K. Aarnio, A. Törnroos & E. Bonsdorff, 2015. Nestedness of trophic links and biological traits in a marine food web. Ecosphere 6: 1–14.CrossRefGoogle Scholar
  57. Obertegger, U. & G. Flaim, 2015. Community assembly of rotifers based on morphological traits. Hydrobiologia 753: 31–45.CrossRefGoogle Scholar
  58. Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231–238.CrossRefGoogle Scholar
  59. Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.CrossRefGoogle Scholar
  60. Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt & E. Kirt, 2005. General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.CrossRefGoogle Scholar
  61. Ott, I. (ed.). 2007. Saadjärve limnoloogilised uurimused II [Limnological studies of Lake Saadjärv]. Eesti Maaülikooli Põllumajandus-ja Keskkonnainstituudi Limnoloogiakeskus (in Estonian).Google Scholar
  62. Paturej, E. & A. Gutkowska, 2015. The effect of salinity levels on the structure of zooplankton communities. Archives of Biological Science Belgrade 67: 483–492.CrossRefGoogle Scholar
  63. Pejler, B., 1995. Relation to habitat in rotifers. Hydrobiologia 313(314): 267–278.CrossRefGoogle Scholar
  64. Pitkänen, H., M. Kiirikki, O. Savchuk, A. Räike, P. Korpinen & F. Wulff, 2007. Searching efficient protection strategies for the eutrophicated Gulf of Finland: the combined use of 1D and 3D modeling in assessing long-term state scenarios with high spatial resolution. Ambio 36: 272–279.CrossRefPubMedGoogle Scholar
  65. Pitkänen, H., J. Lehtoranta & H. Peltonen, 2008. The Gulf of Finland. In Schiewer, U. (ed.), Ecology of Baltic Coastal Waters. Springer, Berlin: 285–308.CrossRefGoogle Scholar
  66. Pomerleau, C., A. R. Sastri & B. E. Beisner, 2015. Evaluation of functional trait diversity for marine zooplankton communities in the Northeast subarctic Pacific Ocean. Journal of Plankton Research 37: 712–726.CrossRefGoogle Scholar
  67. R Core Team 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  68. Radwan, S. & I. Bielańska-Grajner, 2001. Ecological structure of psammic rotifers in the ecotonal zone of Lake Piaseczno (eastern Poland). Hydrobiologia 446(447): 221–228.CrossRefGoogle Scholar
  69. Ridgeway, G., D. Edwards, B. Kriegler, S. Schroedl & H. Southworth, 2015. gbm: Generalized Boosted Regression Models. R package version 2.1.1.
  70. Ristau, K., N. Spann & W. Traunspurger, 2015. Species and trait compositions of freshwater nematodes as indicative descriptors of lake eutrophication. Ecological Indicators 53: 196–205.CrossRefGoogle Scholar
  71. Rothhaupt, K. O., 1990. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnology and Oceanography 35: 16–23.CrossRefGoogle Scholar
  72. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of planktonic rotifers. Archiv für Hydrobiologie 8: 71–76.Google Scholar
  73. Salt, G. W., 1987. The components of feeding behavior in rotifers. Hydrobiologia 147: 271–281.CrossRefGoogle Scholar
  74. Saunders-Davies, A., 1998. Differences in rotifer populations of the littoral and sub-littoral pools of a large marine lagoon. Hydrobiologia 387(388): 225–230.CrossRefGoogle Scholar
  75. Schmid-Araya, J. M., 1998. Rotifers in interstitial sediments. Hydrobiologia 387(388): 231–240.CrossRefGoogle Scholar
  76. Segers, H., 1995. Rotifera. Vol. 2: The Lecanidae (Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 6. SPB Academic Publishing bv, The Hague.Google Scholar
  77. Segers, H., 2007. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564: 1–104.Google Scholar
  78. Segers, H., 2008. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595: 49–59.CrossRefGoogle Scholar
  79. Smith, H. A., J. Ejsmont-Karabin, T. M. Hess & R. L. Wallace, 2009. Paradox of planktonic rotifers: similar structure but unique trajectories in communities of the Great Masurian Lakes (Poland). Verhandlungen des Internationalen Verein Limnologie 30: 951–956.Google Scholar
  80. Špoljar, M., I. Habdija, B. Primc-Habdija & L. Sipos, 2005. Impact of environmental variables and food availability on rotifer assemblage in the karstic barrage Lake Visovac (Krka River, Croatia). International Review of Hydrobiology 90: 555–579.CrossRefGoogle Scholar
  81. Špoljar, M., T. Tomljanović & I. Lalić, 2011. Eutrophication impact on zooplankton community: a shallow lake approach. the Holistic Approach to. Environment 4: 131–142.Google Scholar
  82. Strayer, D. L., S. E. May, P. Nielsen, W. Wollheim & S. Hausam, 1997. Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Archiv für Hydrobiologie 140: 131–144.CrossRefGoogle Scholar
  83. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bulletin of the Fisheries Research Board of Canada 167: 1–310.Google Scholar
  84. Thane-Fenchel, A., 1968. Distribution and ecology of non-planktonic brackish-water rotifers from Scandinavian waters. Ophelia 5: 273–297.CrossRefGoogle Scholar
  85. Tuvikene, L., A. Kisand, I. Tõnno & P. Nõges, 2004. Chemistry of lake water and bottom sediments. In Haberman, J., E. Pihu & A. Raukas (eds.), Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn: 89–102.Google Scholar
  86. Virro, T., J. Haberman, M. Haldna & K. Blank, 2009. Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv. Aquatic Ecology. 43: 755–764.CrossRefGoogle Scholar
  87. Wallace, R. L., 2002. Rotifers: exquisite metazoans. Integrative and Comparative Biology 42: 660–667.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Estonian Marine InstituteUniversity of TartuTallinnEstonia
  2. 2.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia

Personalised recommendations