, Volume 791, Issue 1, pp 115–125 | Cite as

Singing above the chorus: cooperative Princess cichlid fish (Neolamprologus pulcher) has high pitch

  • Rachel K. Spinks
  • Moritz Muschick
  • Walter Salzburger
  • Hugo F. GanteEmail author


Teleost fishes not only communicate with well-known visual cues, but also olfactory and acoustic signals. Communicating with sound has advantages, as acoustic signals propagate fast, omnidirectionally, around obstacles and over long distances. Heterogeneous environments might favour multimodal communication, especially in socially complex species, as the combination of modalities’ strengths helps overcome their individual limitations. Fishes of the ecologically and morphologically diverse family Cichlidae are known to be vocal. Here we investigated sound production in the socially complex Princess cichlid Neolamprologus pulcher from Lake Tanganyika in East Africa. We show that wild and captive N. pulcher produce only short-duration, broadband high-frequency sounds (mean: 12 kHz), when stimulated by mirror images. The evolutionary reasons for this “low frequency silencing” are still unclear. In laboratory experiments, N. pulcher produced distinct two-pulsed calls mostly, but not exclusively, associated with agonistic displays. Princess cichlids produce these high-frequency sounds both in combination with and independent from visual displays, suggesting that sounds are not a by-product of behavioural displays. Further studies on the hearing abilities of N. pulcher are needed to clarify whether the high-frequency sounds are used in intra- or inter-specific communication.


Acoustic signals Sound production High-frequency sound Low-frequency silencing Neolamprologus pulcher Lake Tanganyika 



We thank Lia Albergati and Benjamin Küng for assistance in the field and Miguel Vences for use of the recording equipment. We are grateful to Sigal Balshine, Katarzyna Pisanski and Susan E. Marsh-Rollo for sharing information on their raw data with us. This Project was funded by a travel Grant from the University of Basel to RKS, by Grants from the European Research Council (ERC; StG “CICHLID ~ X”) and the Swiss National Science Foundation (SNF) to WS, and by the “University of Basel Excellence Scholarships for Young Researchers” and “Novartis Excellence Scholarships for Life Sciences” to HFG.

Supplementary material

10750_2016_2921_MOESM1_ESM.wav (618 kb)
Additional file 1 Audio file. Two double-pulsed calls of a male Neolamprologus pulcher, produced during an aggressive lateral display in the laboratory experiments. The first double-pulsed call corresponds to Fig. 2 (WAV 618 kb)
10750_2016_2921_MOESM2_ESM.wav (191 kb)
Additional file 2 Audio file. One double-pulsed call of a female Neolamprologus pulcher, produced during submissive posture in the lab experiments. (WAV 191 kb)
10750_2016_2921_MOESM3_ESM.wav (202 kb)
Additional file 3 Audio file. One double-pulsed call of a male Neolamprologus pulcher, produced without behavioural display (motionless) in the lab experiments. (WAV 202 kb)


  1. Akamatsu, T., T. Okumura, N. Novarini & H. Y. Yan, 2002. Empirical refinements applicable to the recording of fish sounds in small tanks. The Journal of the Acoustical Society of America 112: 3073–3082.CrossRefPubMedGoogle Scholar
  2. Amorim, M. C. P., 2006. Diversity of sound production in fish. Diversity 1: 71–105.Google Scholar
  3. Amorim, M. C. P., P. J. Fonseca & V. C. Almada, 2003. Sound production during courtship and spawning of Oreochromis mossambicus: male–female and male–male interactions. Journal of Fish Biology 62: 658–672.CrossRefGoogle Scholar
  4. Amorim, M. C. P., J. M. Simões, P. J. Fonseca & G. F. Turner, 2008. Species differences in courtship acoustic signals among five Lake Malawi cichlid species (Pseudotropheus spp.). Journal of Fish Biology 72: 1355–1368.CrossRefGoogle Scholar
  5. Astrup, J. & B. Møhl, 1993. Detection of intense ultrasound by the cod Gadus morhua. Journal of Experimental Biology 182: 71–80.Google Scholar
  6. Aubin-Horth, N., J. K. Desjardins, Y. M. Martei, S. Balshine & H. A. Hofmann, 2007. Masculinized dominant females in a cooperatively breeding species. Molecular Ecology 16: 1349–1358.CrossRefPubMedGoogle Scholar
  7. Bachmann, J. C., F. Cortesi, M. Hall, N. J. Marshall, W. Salzburger & H. F. Gante, 2016. Social selection maintains honesty of a dynamic visual signal in cichlid fish. bioRxiv. doi: 10.1101/039313.Google Scholar
  8. Balshine-Earn, S. & A. Lotem, 1998. Individual recognition in a cooperatively breeding cichlid: evidence from video playback experiments. Behaviour 135: 369–386.CrossRefGoogle Scholar
  9. Bertucci, F., J. Attia, M. Beauchaud & N. Mathevon, 2012. Sounds produced by the cichlid fish Metriaclima zebra allow reliable estimation of size and provide information on individual identity. Journal of Fish Biology 80: 752–766.CrossRefPubMedGoogle Scholar
  10. Bradbury, J. W. & S. L. Vehrencamp, 2011. Principles of Animal Communication, 2nd ed. Sinauer Associates Inc, Sunderland, MA.Google Scholar
  11. Buchner, A. S., K. A. Sloman & S. Balshine, 2004. The physiological effects of social status in the cooperatively breeding cichlid Neolamprologus pulcher. Journal of Fish Biology 65: 1080–1095.CrossRefGoogle Scholar
  12. Danley, P. D., M. Husemann & J. Chetta, 2012. Acoustic diversity in Lake Malawi’s rock-dwelling cichlids. Environmental Biology of Fishes 93: 23–30.CrossRefGoogle Scholar
  13. Desjardins, J. K., K. A. Stiver, J. L. Fitzpatrick, N. Milligan, G. J. Van Der Kraak & S. Balshine, 2008. Sex and status in a cooperative breeding fish: behavior and androgens. Behavioral Ecology and Sociobiology 62: 785–794.CrossRefGoogle Scholar
  14. Dijkstra, P. D., S. M. Schaafsma, H. A. Hofmann & T. G. G. Groothuis, 2012. “Winner effect” without winning: unresolved social conflicts increase the probability of winning a subsequent contest in a cichlid fish. Physiology & Behavior. 105: 489–492.CrossRefGoogle Scholar
  15. Fine, M. L. & E. Parmentier, 2015. Mechanisms of fish sound production. In Ladich, F. (ed.), Sound Communication in Fishes. Springer Vienna, Wien: 77–126.Google Scholar
  16. Freeberg, T. M., R. I. M. Dunbar & T. J. Ord, 2012. Social complexity as a proximate and ultimate factor in communicative complexity. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 1785–1801.CrossRefGoogle Scholar
  17. Frostman, P. & P. T. Sherman, 2004. Behavioral response to familiar and unfamiliar neighbors in a territorial cichlid, Neolamprologus pulcher. Ichthyological Research 51: 8–10.CrossRefGoogle Scholar
  18. Gante, H. F. & W. Salzburger, 2012. Evolution: cichlid models on the runaway to speciation. Current Biology 22: R956–R958.CrossRefPubMedGoogle Scholar
  19. Gante, H. F., M. Matschiner, M. Malmstrøm, K. S. Jakobsen, S. Jentoft, & W. Salzburger, (2016). Genomics of speciation and introgression in Princess cichlid fishes from Lake Tanganyika. Molecular Ecology. doi: 10.1111/mec.13767.PubMedGoogle Scholar
  20. Heffner, H. E. & R. S. Heffner, 1998. Hearing. In Greenberg, G. & M. M. Haraway (eds), Comparative Psychology, A Handbook. Garland, New York: 290–303.Google Scholar
  21. Kenyon, T. N., F. Ladich & H. Y. Yan, 1998. A comparative study of hearing ability in fishes: the auditory brainstem response approach. Journal of Comparative Physiology A 182: 307–318.CrossRefGoogle Scholar
  22. Kohda, M., L. A. Jordan, T. Hotta, N. Kosaka, K. Karino, H. Tanaka, M. Taniyama & T. Takeyama, 2015. Facial recognition in a group-living cichlid fish. PLoS One 10: 1–12.CrossRefGoogle Scholar
  23. Kottege, N., R. Jurdak, F. Kroon & D. Jones, 2015. Automated detection of broadband clicks of freshwater fish using spectro-temporal features. The Journal of the Acoustical Society of America 137: 2502–2511.CrossRefPubMedGoogle Scholar
  24. Ladich, F., 1990. Vocalization during agonistic behaviour in Cottus gobio L. (Cottidae): an acoustic threat display. Ethology 84: 193–201.CrossRefGoogle Scholar
  25. Ladich, F., 1997. Agonistic behaviour and significance of sounds in vocalizing fish. Marine and Freshwater Behaviour and Physiology 29: 87–108.CrossRefGoogle Scholar
  26. Ladich, F. & R. R. Fay, 2013. Auditory evoked potential audiometry in fish. Reviews in Fish Biology and Fisheries 23: 317–364.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ladich, F. & T. Schulz-Mirbach, 2013. Hearing in cichlid fishes under noise conditions. PloS ONE 8: e57588.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ladich, F. & T. Schulz-Mirbach, 2016. Diversity in fish auditory systems: one of the riddles of sensory biology. Frontiers in Ecology and Evolution 4: 1–26.CrossRefGoogle Scholar
  29. Ladich, F. & L. E. Wysocki, 2003. How does tripus extirpation affect auditory sensitivity in goldfish? Hearing Research 182: 119–129.CrossRefPubMedGoogle Scholar
  30. Lanzing, W. J. R., 1974. Sound production in the cichlid Tilapia mossambica Peters. Journal of Fish Biology 6: 341–347.CrossRefGoogle Scholar
  31. Le Vin, A. L., B. K. Mable & K. E. Arnold, 2010. Kin recognition via phenotype matching in a cooperatively breeding cichlid, Neolamprologus pulcher. Animal Behaviour 79: 1109–1114.CrossRefGoogle Scholar
  32. Lobel, P. S., I. M. Kaatz & A. N. Rice, 2010. Acoustical behavior of coral reef fishes. In Cole, K. (ed.), Reproduction and Sexuality in Marine Fishes. University of California Press, Berkeley, CA: 307–386.Google Scholar
  33. Longrie, N., M. L. Fine & E. Parmentier, 2008. Innate sound production in the cichlid Oreochromis niloticus. Journal of Zoology 275: 413–417.CrossRefGoogle Scholar
  34. Longrie, N., S. Van Wassenbergh, P. Vandewalle, Q. Mauguit & E. Parmentier, 2009. Potential mechanism of sound production in Oreochromis niloticus (Cichlidae). The Journal of Experimental Biology 212: 3395–3402.CrossRefPubMedGoogle Scholar
  35. Love, E. K. & M. A. Bee, 2010. An experimental test of noise-dependent voice amplitude regulation in Cope’s grey treefrog, Hyla chrysoscelis. Animal Behaviour 80: 509–515.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lugli, M., 2015. Habitat acoustics and the low-frequency communication of shallow water fishes. In Ladich, F. (ed.), Sound Communication in Fishes. Springer Vienna, Wien: 175–206.Google Scholar
  37. Lythgoe, J. N. & J. C. Partridge, 1991. The modelling of optimal visual pigments of dichromatic teleosts in green coastal waters. Vision Research 31: 361–371.CrossRefPubMedGoogle Scholar
  38. Mann, D. A., Z. Lu & A. N. Popper, 1997. A clupeid fish can detect ultrasound. Nature 389: 341.CrossRefGoogle Scholar
  39. Maruska, K. P. & R. D. Fernald, 2013. Social regulation of male reproductive plasticity in an African cichlid fish. Integrative and Comparative Biology 53: 938–950.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Maruska, K. P., U. S. Ung & R. D. Fernald, 2012. The African cichlid fish Astatotilapia burtoni uses acoustic communication for reproduction: sound production, hearing, and behavioral significance. PLoS One 7: 1–13.CrossRefGoogle Scholar
  41. Munoz, N. E. & D. T. Blumstein, 2012. Multisensory perception in uncertain environments. Behavioral Ecology 23: 457–462.CrossRefGoogle Scholar
  42. Muschick, M., A. Indermaur & W. Salzburger, 2012. Convergent evolution within an adaptive radiation of cichlid fishes. Current Biology 22: 2362–2368.CrossRefPubMedGoogle Scholar
  43. Myrberg Jr., A. A., E. Kramer & P. Heinecke, 1965. Sound production by cichlid fishes. Science 149: 555–558.CrossRefPubMedGoogle Scholar
  44. Nelissen, M. H. J., 1978. Sound production by some Tanganyikan cichlid fishes and a hypothesis for the evolution of their communication mechanisms. Behaviour 64: 137–147.CrossRefPubMedGoogle Scholar
  45. Nemeth, E., N. Pieretti, S. A. Zollinger, N. Geberzahn, J. Partecke, A. C. Miranda & H. Brumm, 2013. Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities. Proceedings of the Royal Society B: Biological Sciences 280: 20122798.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Parikh, V. N., T. Clement & R. D. Fernald, 2006. Physiological consequences of social descent: studies in Astatotilapia burtoni. Journal of Endocrinology 190: 183–190.CrossRefPubMedGoogle Scholar
  47. Pisanski, K., S. E. Marsh-Rollo & S. Balshine, 2015. Courting and fighting quietly: a lack of acoustic signals in a cooperative Tanganyikan cichlid fish. Hydrobiologia 748: 87–97.CrossRefGoogle Scholar
  48. Popper, A. N. & Z. Lu, 2000. Structure–function relationships in fish otolith organs. Fisheries Research 46: 15–25.CrossRefGoogle Scholar
  49. R Core Team, 2015. R: A Language and Environment for Statistical Computing. Austria, Vienna.Google Scholar
  50. Radford, C. A., S. Ghazali, A. G. Jeffs & J. C. Montgomery, 2015. Vocalisations of the bigeye Pempheris adspersa: characteristics, source level and active space. Journal of Experimental Biology 218: 940–948.CrossRefPubMedGoogle Scholar
  51. Rice, A. N. & P. S. Lobel, 2004. The pharyngeal jaw apparatus of the Cichlidae and Pomacentridae: function in feeding and sound production. Reviews in Fish Biology and Fisheries 13: 433–444.CrossRefGoogle Scholar
  52. Ripley, J. L. & P. S. Lobel, 2004. Correlation of acoustic and visual signals in the cichlid fish, Tramitichromis intermedius. Environmental Biology of Fishes 71: 389–394.CrossRefGoogle Scholar
  53. Ripley, J. L., P. S. Lobel & H. Y. Yan, 2002. Correlation of sound production with hearing sensitivity in the Lake Malawi cichlid Tramitichromis intermedius. Bioacoustics 12: 238–240.CrossRefGoogle Scholar
  54. Rowland, W. J., 1999. Studying visual cues in fish behavior: a review of ethological techniques. Environmental Biology of Fishes 56: 285–305.CrossRefGoogle Scholar
  55. Rumyantsev, S. L., S. Sawyer, N. Pala, M. S. Shur, Y. Bilenko, J. P. Zhang, X. Hu, A. Lunev, J. Deng & R. Gaska, 2005. Low frequency noise of light emitting diodes. Proc SPIE Noise Dev Circ III 5844: 75–85.Google Scholar
  56. Salzburger, W., 2009. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Molecular Ecology 18: 169–185.CrossRefPubMedGoogle Scholar
  57. Salzburger, W., B. Van Bocxlaer & A. S. Cohen, 2014. Ecology and evolution of the African Great Lakes and their faunas. Annual Review of Ecology, Evolution, and Systematics 45: 519–545.CrossRefGoogle Scholar
  58. Santos, M. E. & W. Salzburger, 2012. Evolution. How cichlids diversify. Science (New York, N.Y.) 338: 619–621.CrossRefGoogle Scholar
  59. Simões, J. M., I. G. Duarte, P. J. Fonseca, G. F. Turner & M. C. Amorim, 2008. Courtship and agonistic sounds by the cichlid fish Pseudotropheus zebra. The Journal of the Acoustical Society of America 124: 1332–1338.CrossRefGoogle Scholar
  60. Smith, M. E., A. S. Kane & A. N. Popper, 2004. Acoustical stress and hearing sensitivity in fishes: does the linear threshold shift hypothesis hold water? The Journal of Experimental Biology 207: 3591–3602.CrossRefPubMedGoogle Scholar
  61. Sopinka, N. M., J. L. Fitzpatrick, J. K. Desjardins, K. A. Stiver, S. E. Marsh-Rollo & S. Balshine, 2009. Liver size reveals social status in the African cichlid Neolamprologus pulcher. Journal of Fish Biology 75: 1–16.CrossRefPubMedGoogle Scholar
  62. Stevens, M., 2013. Sensory Ecology, Behaviour, and Evolution. Oxford University Press, Oxford.CrossRefGoogle Scholar
  63. van Oosterom, L., J. C. Montgomery, A. G. Jeffs & C. A. Radford, 2016. Evidence for contact calls in fish: conspecific vocalisations and ambient soundscape influence group cohesion in a nocturnal species. Scientific Reports Nature Publishing Group 6: 1–8.Google Scholar
  64. van Staaden, M., L. E. Wysocki & F. Ladich, 2012. Ecoacoustical constraints shape sound communication in Lake Malawi Cichlids [abstract]. Bioacoustics 21: 84.Google Scholar
  65. Verzijden, M. N., J. Van Heusden, N. Bouton, F. Witte, C. Ten Cate & H. Slabbekoorn, 2010. Sounds of male Lake Victoria cichlids vary within and between species and affect female mate preferences. Behavioral Ecology 21: 548–555.CrossRefGoogle Scholar
  66. Wagner, C. E., L. J. Harmon & O. Seehausen, 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature Nature Publishing Group 487: 366–369.Google Scholar
  67. White, S. A., T. Nguyen & R. D. Fernald, 2002. Social regulation of gonadotropin-releasing hormone. The Journal of Experimental Biology 205: 2567–2581.PubMedGoogle Scholar
  68. Wong, M. & S. Balshine, 2011. The evolution of cooperative breeding in the African cichlid fish, Neolamprologus pulcher. Biological Reviews of the Cambridge Philosophical Society 86: 511–530.CrossRefPubMedGoogle Scholar
  69. Zöttl, M., D. Heg, N. Chervet & M. Taborsky, 2013. Kinship reduces alloparental care in cooperative cichlids where helpers pay-to-stay. Nature Communications 4: 1341.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Zoological InstituteUniversity of BaselBaselSwitzerland
  2. 2.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  3. 3.Department of Fish Ecology & EvolutionEAWAG Centre for Ecology, Evolution and BiogeochemistryKastanienbaumSwitzerland

Personalised recommendations