, Volume 784, Issue 1, pp 381–395 | Cite as

Hybridisation and cryptic invasion in Najas marina L. (Hydrocharitaceae)?

  • Stephanie RüeggEmail author
  • Uta Raeder
  • Arnulf Melzer
  • Günther Heubl
  • Christian Bräuchler
Primary Research Paper


Macrophytes have been used as bioindicators for eutrophication assessment in freshwaters required by the European Water Framework Directive (WFD). The red listed Najas marina s.l. is routinely mapped in Germany. Different indicator values have been assigned to the subspecies marina and intermedia which are, however, frequently hard to tell apart due to morphological similarity. Therefore, phylogenetic structure within N. marina s.l. was investigated using nuclear ribosomal (ITS) and chloroplast (trnL-F) DNA sequence data from over a hundred accessions, representing three of the 12 subspecies and one of four varieties in N. marina. The samples group in two distinct clusters, which could be correlated to the two karyotypes previously reported. The clusters differ in 45 positions of ITS and 10 of trnL-F, respectively, with almost no variation within. Conflicting placement in the nuclear and chloroplast tree supported by cloning of heterozygotic samples identified hybrids in four cases. The clear-cut molecular differentiation in spite of morphological similarity identifies both lineages as distinct but cryptic species (N. marina and N. major). Based on our modified concept and the uncertainty introduced by former misidentification, the use of the two taxa for the purpose of the WFD and regional red list status needs re-evaluation.


Cryptic divergence Najas intermedia Najas major Red list ITS trnL-F 



The funding of this project was provided by Bavarian State Ministry of the Environment and Consumer Protection (Grant Number TLK01U-60031). The authors thank the following people for contributing to this study: Prof. Dr. Ludwig Triest for scholarly exchange and providing herbarium material, Tanja Ernst for excellent technical assistance, all scientific divers (in first place Maximiliane Schümann and Kristin Wutz), assisting students and colleagues of the Limnological Research Station Iffeldorf, TU Munich, for various contributions, the curators and directors of the herbaria providing samples of dried specimens and locality data, and Dr. Markus Heinrichs and Dr. Tanja Beige for very helpful comments on the manuscript. Finally, the authors appreciate the feedback provided by Prof. Dr. Tanja Gschlößl and the valuable suggestions of our reviewers.

Supplementary material

10750_2016_2899_MOESM1_ESM.xlsx (32 kb)
Supplementary material 1 (XLSX 31 kb)


  1. Acosta, M. C. & A. C. Premoli, 2010. Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Molecular Phylogenetics and Evolution 54: 235–242.CrossRefPubMedGoogle Scholar
  2. Álvarez, I. & J. F. Wendel, 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417–434.CrossRefPubMedGoogle Scholar
  3. Andreasen, K. & B. G. Baldwin, 2001. Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S to 26S rDNA internal and external transcribed spacers. Molecular Biology and Evolution 18: 936–944.CrossRefPubMedGoogle Scholar
  4. Austerlitz, F., S. Mariette, N. Machon, P.-H. Gouyon & B. Godelle, 2000. Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154: 1309–1321.PubMedPubMedCentralGoogle Scholar
  5. Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell & M. J. Donoghue, 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82: 247–277.CrossRefGoogle Scholar
  6. Barrett, S. C. H., C. G. Eckert & B. C. Husband, 1993. Evolutionary processes in aquatic plant populations. Aquatic Botany 44: 105–145.CrossRefGoogle Scholar
  7. Brakenhoff, R. H., J. G. Schoenmakers & N. H. Lubsen, 1991. Chimeric cDNA clones: a novel PCR artifact. Nucleic Acids Research 19: 1949.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bräuchler, C., 2010. Najas marina. Schuhwerk, F. (ed), Floristische Kurzmitteilungen, Berichte der Bayerischen Botanischen Gesellschaft 80: 181–182.Google Scholar
  9. Bräuchler, C., 2015. Towards a better understanding of the Najas marina complex: notes on the correct application and typification of the names N. intermedia, N. major, and N. marina. Taxon 64: 1028–1030.CrossRefGoogle Scholar
  10. Bräuchler, C., H. Meimberg & G. Heubl, 2004. Molecular phylogeny of the genera Digitalis L. and Isoplexis (Lindley) Loudon (Veronicaceae) based on ITS- and trnL-F sequences. Plant Systematics and Evolution 248: 111–128.CrossRefGoogle Scholar
  11. Bräuchler, C., H. Meimberg & G. Heubl, 2010. Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) – taxonomy, biogeography and conflicts. Molecular Phylogenetics and Evolution 55: 501–523.CrossRefPubMedGoogle Scholar
  12. Buch, C., A. Jagel & K. Van De Weyer, 2012. Najas marina L. subsp. intermedia (WOLFG. ex GORSKI) CASPER (Hydrocharitaceae), in the lower Rhine region: the first record for North Rhine-Westphalia. Veröffentlichungen des Bochumer Botanischen Vereins 4(4): 38–43.
  13. Casper, S. J., 1979. Beiträge zur Taxonomie und Chorologie europäischer Wasser und Sumpfpflanzen 2. Was ist Najas marina L.? Feddes Repertorium 90: 217–238.CrossRefGoogle Scholar
  14. Casper, S. J. & H.-D. Krausch, 1980. Pteridophyta und Anthophyta, 1. Teil – Lycopodiaceae bis Orchidaceae. In Ettl, H., J. Gerloff & H. Heynig (eds.), Süßwasserflora von Mitteleuropa 23. Gustav Fischer Verlag, Stuttgart, New York: 139–149.Google Scholar
  15. Cheffings, C.M., L. Farrell, T.D. Dines, R.A. Jones, S.J. Leach, D.R. McKean, D.A. Pearman, C.D. Preston, F.J. Rumsey & I. Taylor, 2005. The Vascular Plant Red Data List for Great Britain. Species Status 7: 1–116. In: Cheffings, C.M. & Farrell, L. (eds). Joint Nature Conservation Committee, Peterborough.Google Scholar
  16. Chen, C. W., Y. M. Huang, L. Y. Kuo, Q. D. Nguyen, H. T. Luu, J. R. Callado, D. R. Farrar & W. L. Chiou, 2013. trnL-F is a powerful marker for DNA identification of field vittarioid gametophytes (Pteridaceae). Annals of Botany 111: 663–673.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen, L., J. Chen, R. W. Gituru & Q. Wang, 2012. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evolutionary Biology 12: 30.CrossRefPubMedPubMedCentralGoogle Scholar
  18. China Plant BOL Group, D.-Z. Li, L.-M. Gao, H.-T. Li, H. Wang, X.-J. Ge, J.-Q. Liu, Z.-D. Chen, S.-L. Zhou, S.-L. Chen, J.-B. Yang, C.-X. Fu, C.-X. Zeng, H. F. Yan, Y.-J. Zhu, Y.-S. Sun, S.-Y. Chen, L. Zhao, K. Wang, T. Yang & G.-W. Duan, 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences 108: 19641–19646.CrossRefGoogle Scholar
  19. European Commission, 2005. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance on the intercalibration process 2004–2006. In: Commission, E. (ed.). Office for Official publications of the European Communities, Guidance Document No. 14, Luxembourg.Google Scholar
  20. Gehrke, B., C. Bräuchler, K. Romoleroux, M. Lundberg, G. Heubl & T. Eriksson, 2008. Molecular phylogenetics of Alchemilla, Aphanes and Lachemilla (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification. Molecular Phylogenetics and Evolution 47: 1030–1044.CrossRefPubMedGoogle Scholar
  21. Geist, J., 2014. Trends and directions in water quality and habitat management in the context of the European water framework directive. Fisheries 39: 219–220.CrossRefGoogle Scholar
  22. Geller, J. B., 1999. Decline of a native mussel masked by sibling species invasion. Conservation Biology 13: 661–664.CrossRefGoogle Scholar
  23. Geller, J. B., J. A. Darling & J. T. Carlton, 2010. Genetic perspectives on marine biological invasions. Annual Review of Marine Science 2: 367–393.CrossRefPubMedGoogle Scholar
  24. Gemeinholzer, B., C. Oberprieler & K. Bachmann, 2006. Using GenBank data for plant identification: possibilities and limitations using the ITS 1 of Asteraceae species belonging to the tribes Lactuceae and Anthemideae. Taxon 55: 173–187.CrossRefGoogle Scholar
  25. Gerlach, J. D., B. S. Bushman, J. K. McKay & H. Meimberg, 2009. Taxonomic confusion permits the unchecked invasion of vernal pools in California by Low Mannagrass (Glyceria declinata). Invasive Plant Science and Management 2: 92–97.CrossRefGoogle Scholar
  26. Haeupler, H. & T. Muer, 2007. Bildatlas der Farn- und Blütenpflanzen Deutschlands, 2nd ed. Eugen Ulmer Verlag KG, Stuttgart.Google Scholar
  27. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41: 95–98.Google Scholar
  28. Hering, J. G., D. L. Sedlak, C. Tortajada, A. K. Biswas, C. Niwagaba & T. Breu, 2015. Local perspectives on water. Science 349: 479–480.CrossRefPubMedGoogle Scholar
  29. Hoffmann, M. A., A. Benavent González, U. Raeder & A. Melzer, 2013a. Experimental weed control of Najas marina ssp. intermedia and Elodea nuttallii in lakes using biodegradable jute matting. Journal of Limnology 72: e39.CrossRefGoogle Scholar
  30. Hoffmann, M. A., M. Sacher, S. Lehner, U. Raeder & A. Melzer, 2013b. Influence of sediment on the growth of the invasive macrophyte Najas marina ssp. intermedia in lakes. Limnologica-Ecology and Management of Inland Waters 43: 265–271.CrossRefGoogle Scholar
  31. Holmgren, P.K. & N.H. Holmgren, 1998. Continuously updated electronic resource. Index herbariorum: A global directory of public herbaria and associated staff New York Botanical Garden’s Virtual Herbarium, New York. (26 January 2009).
  32. Hoshi, Y., J. Shirakawa & M. Hasebe, 2006. Nucleotide sequence variation was unexpectedly low in an endangered species, Aldrovanda vesiculosa L. (Droseraceae). Chromosome Botany 1: 27–32.CrossRefGoogle Scholar
  33. Huotari, T. & H. Korpelainen, 2013. Comparative analyses of plastid sequences between native and introduced populations of aquatic weeds Elodea canadensis and E. nuttallii. PloS One 8: e58073.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huson, D., D. Richter, C. Rausch, T. Dezulian, M. Franz & R. Rupp, 2007. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8: 460.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ito, Y., T. Ohi-Toma, J. Murata & N. Tanaka, 2010. Hybridization and polyploidy of an aquatic plant, Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies. American Journal of Botany 97: 1156–1167.PubMedGoogle Scholar
  36. Ito, Y., T. Ohi-Toma, J. Murata & N. Tanaka, 2013. Comprehensive phylogenetic analyses of the Ruppia maritima complex focusing on taxa from the Mediterranean. Journal of Plant Research 126: 753–762.CrossRefPubMedGoogle Scholar
  37. Katoh, K. & D. M. Standley, 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in Performance and Usability. Molecular Biology and Evolution 30: 772–780.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kelso, N.V. & T. Patterson, 2010. Introducing natural earth data – Geographia Technica Special Issue: 82–89.Google Scholar
  39. Korneck, D., M. Schnittler & I. Vollmer, 1996. Rote Liste der Farn-und Blutenpflanzen (Pteridophyta und Spermatophyta) Deutschlands. Schriftenreihe fur Vegetationskunde 28: 21–187.Google Scholar
  40. Lambertini, C., T. Riis, B. Olesen, J. S. Clayton, B. K. Sorrell & H. Brix, 2010. Genetic diversity in three invasive clonal aquatic species in New Zealand. BMC Genetics 11: 1–18.CrossRefGoogle Scholar
  41. Les, D. H. & C. T. Philbrick, 1993. Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. Aquatic Botany 44: 181–228.CrossRefGoogle Scholar
  42. Les, D. H., M. L. Moody & C. L. Soros, 2006. A reappraisal of phylogenetic relationships in the monocotyledon family Hydrocharitaceae (Alismatidae). Aliso 22: 211–230.Google Scholar
  43. Les, D. H., S. P. Sheldon & N. P. Tippery, 2010. Hybridization in hydrophiles: natural interspecific hybrids in Najas (Hydrocharitaceae). Systematic Botany 35: 736–744.CrossRefGoogle Scholar
  44. Les, D. H., E. L. Peredo, L. K. Benoit, N. P. Tippery, U. M. King & S. P. Sheldon, 2013. Phytogeography of Najas gracillima (Hydrocharitaceae) in North America and its cryptic introduction to California. American Journal of Botany 100: 1905–1915.CrossRefPubMedGoogle Scholar
  45. Les, D.H., E.L. Peredo, U.M. King, L.K. Benoit, N.P. Tippery, C.J. Ball & R.K. Shannon, 2015. Through thick and thin: Cryptic sympatric speciation in the submersed genus Najas (Hydrocharitaceae). Molecular Phylogenetics and Evolution 82(Part A): 15–30.Google Scholar
  46. Lobel, P. B., S. P. Belkhode, S. E. Jackson & H. P. Longerich, 1990. Recent taxonomic discoveries concerning the mussel Mytilus: implications for biomonitoring. Archives of Environmental Contamination and Toxicology 19: 508–512.CrossRefGoogle Scholar
  47. Magnus, P., 1870. Beitrage zur Kenntnis der Gattung Najas L., PhD Thesis. Reimer, Berlin.Google Scholar
  48. McInerney, P., P. Adams & M. Z. Hadi, 2014. Error rate comparison during polymerase chain reaction by DNA polymerase. Molecular Biology International 2014: 8.CrossRefGoogle Scholar
  49. Melzer, A., 1999. Aquatic macrophytes as tools for lake management. Hydrobiologia 395–396: 181–190.CrossRefGoogle Scholar
  50. Michalski, S. G. & W. Durka, 2015. Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages. Ecology and Evolution 5: 2172–2184.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mukherjee, A., D. Williams, M. A. Gitzendanner, W. A. Overholt & J. P. Cuda, 2016. Microsatellite and chloroplast DNA diversity of the invasive aquatic weed Hygrophila polysperma in native and invasive ranges. Aquatic Botany 129: 55–61.CrossRefGoogle Scholar
  52. Nguyen, V., M. Detcharoen, P. Tuntiprapas, U. Soe-Htun, J. Sidik, M. Harah, A. Prathep & J. Papenbrock, 2014. Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. BMC Evolutionary Biology 14: 92.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nylander, J.A.A., 2008. MrModeltest 2.3., Uppsala, Department of Systematic Zoology, Uppsala University, Program distributed by the author.Google Scholar
  54. Penning, W. E., M. Mjelde, B. Dudley, S. Hellsten, J. Hanganu, A. Kolada, M. Berg, S. Poikane, G. Phillips, N. Willby & F. Ecke, 2008. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology 42: 237–251.CrossRefGoogle Scholar
  55. Peredo, E. L., U. M. King & D. H. Les, 2013. The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm. PloS One 8: e68591.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pietsch, W., 1981. Zur Bioindikation Najas marina L. s. l. – und Hydrilla verticillata (L. fil.) Royle – reicher Gewässer Mitteleuropas. Feddes Repertorium 92: 125–174.CrossRefGoogle Scholar
  57. Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.CrossRefPubMedGoogle Scholar
  58. Posada, D. & T. R. Buckley, 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793–808.CrossRefPubMedGoogle Scholar
  59. QGIS, D.T., 2014. QGIS Geographic Information System. Open Source Geospatial Foundation Project.
  60. Rodríguez, F., J. L. Oliver, A. Marín & J. R. Medina, 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501.CrossRefPubMedGoogle Scholar
  61. Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.CrossRefPubMedGoogle Scholar
  62. Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, R. T. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O’Neil, I. M. Parker, J. N. Thompson & S. G. Weller, 2001. The population biology of invasive species. Annual Review of Ecology and Systematics 32: 305–332.CrossRefGoogle Scholar
  63. Saltonstall, K., 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences 99: 2445–2449.CrossRefGoogle Scholar
  64. Schaumburg, J., C. Schranz, G. Hofmann, D. Stelzer, S. Schneider & U. Schmedtje, 2004. Macrophytes and phytobenthos as indicators of ecological status in German lakes – a contribution to the implementation of the Water Framework Directive. Limnologica 34: 302–314.CrossRefGoogle Scholar
  65. Schaumburg, J., C. Schranz, P. Meilinger, D. Stelzer & A. Vogel, 2011. Bewertung von Seen mit Makrophyten & Phytobenthos gemäß EG-WRRL – Anpassung des Verfahrens aufgrund erster Ergebnisse und Erfahrungen aus den Bundesländern – Endbericht im Auftrag der LAWA (Projekt Nr. O 8.08). Bayerisches Landesamt für Umwelt, München 296.
  66. Schilthuizen, M., C. S. Vairappan, E. M. Slade, D. J. Mann & J. A. Miller, 2015. Specimens as primary data: museums and ‘open science’. Trends in ecology & evolution 30: 237–238.CrossRefGoogle Scholar
  67. Schneider, S., C. Schranz & A. Melzer, 2000. Indicating the trophic state of running waters by submersed macrophytes and epilithic diatoms: exemplary implementation of a new classification of taxa into trophic classes. Limnologica - Ecology and Management of Inland Waters 30: 1–8.CrossRefGoogle Scholar
  68. Sculthorpe, C. D., 1967. Biology of Aquatic Vascular Plants. Edward Arnold Ltd., London.Google Scholar
  69. Simpson, D. A., 1988. Phenotypic plasticity of Elodea nuttallii (Planch.) H. St John and Elodea canadensis Michx in the British Isles. Watsonia 17: 121–132.Google Scholar
  70. Soltis, D. E., E. V. Mavrodiev, J. J. Doyle, J. Rauscher & P. S. Soltis, 2008. ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Systematic Botany 33: 7–20.CrossRefGoogle Scholar
  71. Stelzer, D., S. Schneider & A. Melzer, 2005. Macrophyte-Based assessment of lakes – a contribution to the implementation of the european water framework directive in Germany. International Review of Hydrobiology 90: 223–237.CrossRefGoogle Scholar
  72. Telford, A., M. T. O’Hare, S. Cavers & N. Holmes, 2011. Can genetic bar-coding be used to identify aquatic Ranunculus L. subgenus Batrachium (DC) A. Gray? A test using some species from the British Isles. Aquatic Botany 95: 65–70.CrossRefGoogle Scholar
  73. Tippery, N. P. & D. H. Les, 2013. Hybridization and systematics of dioecious North American Nymphoides (N. aquatica and N. cordata; Menyanthaceae). Aquatic Botany 104: 127–137.CrossRefGoogle Scholar
  74. Triest, L., 1988. A revision of the genus Najas L.(Najadaceae) in the Old World. Academie Royale des Sciences d’Outre-Mer, Classe des sciences naturelles et médicales, Mémoires in-8°, Nouv. sér. 22 (1): 172, Brussel.Google Scholar
  75. Triest, L., 1989. Electrophoretic polymorphism and divergence in Najas marina L. (Najadaceae): molecular markers for individuals, hybrids, cytodemes, lower taxa, ecodemes and conservation of genetic diversity. Aquatic Botany 33: 301–380.CrossRefGoogle Scholar
  76. Triest, L., 1991. ADH polymorphism in Najas marina (Najadaceae): the situation in an obligate outcrosser. Opera Botanica Belgica 4: 167–192.Google Scholar
  77. Triest, L. & T. Sierens, 2010. Chloroplast sequences reveal a diversity gradient in the Mediterranean Ruppia cirrhosa species complex. Aquatic Botany 93: 68–74.CrossRefGoogle Scholar
  78. Triest, L., J. Van Geyt & V. Ranson, 1986. Isozyme polymorphism in several populations of Najas marina L. Aquatic Botany 24: 373–384.CrossRefGoogle Scholar
  79. van de Weyer, K., C. Schmidt, B. Kreimeier & D. Wassong, 2011. Bestimmungsschlüssel für die aquatischen Makrphyten (Gefäßpflanzen, Armleuchteralgen und Moose) in Deutschland. Landesamt für Umwelt, Gesundheit und Verbraucherschutz, Potsdam.Google Scholar
  80. Vargas, P., B. G. Baldwin & L. Constance, 1998. Nuclear ribosomal DNA evidence for a western North American origin of Hawaiian and South American species of Sanicula (Apiaceae). Proceedings of the National Academy of Sciences of the United States of America 95: 235–240.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Viinikka, Y., 1976. Najas marina L. (Najadaceae). Karyotypes, cultivation and morphological variation. Annales Botanici Fennici 13: 119–131.Google Scholar
  82. Viinikka, Y., M. Agami & L. Triest, 1987. A tetraploid cytotype of Najas marina L. Hereditas 106: 289–291.CrossRefGoogle Scholar
  83. Wallin, M., T. Wiederholm & R.K. Johnson, 2002. Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. CIS Working Group 2.3 – REFCOND. 5th and final draft, final version 7.0, 2003-03-05:93.Google Scholar
  84. Waycott, M., D. W. Freshwater, R. A. York, A. Calladine & W. J. Kenworthy, 2002. Evolutionary trends in the seagrass genus Halophila (Thouars): insights from molecular phylogeny. Bulletin of Marine Science 71: 1299–1308.Google Scholar
  85. White, T. J., T. Bruns, S. Lee & J. W. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. H. Gelfand, J. J. Sninsky & T. J. White (eds.), PCR Protocols, A Guide to Methods and Applications. Academic Press, New York.Google Scholar
  86. Wiegleb, G., 1978. Der soziologische Konnex der 47 häufigsten Makrophyten der Gewässer Mitteleuropas. Vegetatio 38: 165–174.CrossRefGoogle Scholar
  87. Winge, Ö., 1927. Chromosome behaviour in male and female individuals of Vallisneria spiralis and Najas marina. Journal of Genetics 18(1): 99–107.CrossRefGoogle Scholar
  88. Yuan, Y.-W. & R. G. Olmstead, 2008. A species-level phylogenetic study of the Verbena complex (Verbenaceae) indicates two independent intergeneric chloroplast transfers. Molecular Phylogenetics and Evolution 48: 23–33.CrossRefPubMedGoogle Scholar
  89. Yue, J.-X., J. Li, D. Wang, H. Araki, D. Tian & S. Yang, 2010. Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC Plant Biology 10: 242.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stephanie Rüegg
    • 1
    Email author
  • Uta Raeder
    • 1
  • Arnulf Melzer
    • 1
  • Günther Heubl
    • 2
  • Christian Bräuchler
    • 3
  1. 1.Aquatic Systems Biology Unit, Limnological Research Station Iffeldorf, Department of Ecology and Ecosystem ManagementTechnical University of MunichIffeldorfGermany
  2. 2.LMU Department Biology I, Biodiversity ResearchSystematic Botany and GeoBio Center LMUMunichGermany
  3. 3.Restoration Ecology Unit, Department of Ecology and Ecosystem ManagementTechnical University of MunichFreising-WeihenstephanGermany

Personalised recommendations