Hydrobiologia

, Volume 788, Issue 1, pp 1–16 | Cite as

Bioassay analysis of nutrient and Artemia franciscana effects on trophic interactions in the Great Salt Lake, USA

  • Elizabeth M. Ogata
  • Wayne A. Wurtsbaugh
  • Trinity N. Smith
  • Susan L. Durham
Primary Research Paper

Abstract

14-day microcosm experiments demonstrated the strong interactions between bottom–up and top–down effects of nutrient addition (control, nitrogen, phosphorus, nitrogen + phosphorus) and Artemia franciscana grazing on algae in Great Salt Lake water from Gilbert Bay. Nitrogen addition increased phytoplankton chlorophyll concentrations, while phosphorus addition had no stimulatory effect. A combined N + P treatment was synergistic, increasing both phytoplankton and periphyton >10-fold above controls. Our results suggest that phytoplankton were primarily limited by nitrogen and secondarily limited by phosphorus and that periphyton was colimited by nitrogen and phosphorus. The grazing effect increased as A. franciscana grew from nauplii to adults and by the final day, A. franciscana had markedly reduced both phytoplankton and periphyton abundance in the Control, +N, and +P treatments. Grazing also significantly reduced periphyton in the N + P treatments. Due to high phytoplankton growth rates in the N + P treatment, A. franciscana grazing did not significantly reduce chlorophyll concentrations during the bioassay. However, A. franciscana in the N + P treatment was significantly larger and had greater reproductive output than in the controls, suggesting that the following generation might have exerted greater grazing pressure.

Keywords

Great Salt Lake Trophic Nitrogen Phosphorus Artemia franciscana Saline 

Supplementary material

10750_2016_2881_MOESM1_ESM.docx (59 kb)
Supplementary material 1 (DOCX 58 kb)

References

  1. APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington.Google Scholar
  2. Barnes, B. D. & W. A. Wurtsbaugh, 2015. The effects of salinity on plankton and benthic communities in the Great Salt Lake, Utah, USA: a microcosm experiment. Canadian Journal of Fisheries and Aquatic Sciences 72: 807–817.CrossRefGoogle Scholar
  3. Belovsky, G. E. & C. Larson, 2002. Brine shrimp population dynamics and sustainable harvesting in the Great Salt Lake, Utah. 2001 Progress Report to the Utah Division of Wildlife Resources, Salt Lake City, Utah. 16pGoogle Scholar
  4. Belovsky, G. E., D. Stephens, C. Perschon, P. Birdsey, D. Paul, D. Naftz, R. Baskin, C. Larson, C. Mellison, J. Luft, R. Mosley, H. Mahon, J. Van Leeuwen & D. V. Allen, 2011. The Great Salt Lake Ecosystem (Utah, USA): long term data and a structural equation approach. Ecosphere 2: 1–40.CrossRefGoogle Scholar
  5. Blomqvist, S., A. Gunnars & R. Elmgren, 2004. Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnology and Oceanography 49: 2236–2241.CrossRefGoogle Scholar
  6. Bronk, D. A., M. W. Lomas, P. M. Glibert, K. J. Schukert & M. P. Sanderson, 2000. Total dissolved nitrogen analysis: comparisons between the persulfate, UV and high temperature oxidation methods. Marine Chemistry 69: 163–178.CrossRefGoogle Scholar
  7. Carpenter, S. R. & J. F. Kitchell, 1988. Consumer control of lake productivity. BioScience 38: 764–769.CrossRefGoogle Scholar
  8. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.CrossRefGoogle Scholar
  9. Carpenter, S. R., J. F. Kitchell, D. M. Post & N. Voichick, 1996. Chlorophyll variability, nutrient input, and grazing: evidence from whole-lake experiments. Ecology 77: 725–735.CrossRefGoogle Scholar
  10. Cullen, J. J., 1991. Hypotheses to explain high-nutrient conditions in the open sea. Limnology and Oceanography 36: 1578–1599.CrossRefGoogle Scholar
  11. Elser, J. J. & J. Urabe, 1999. The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80: 735–751.CrossRefGoogle Scholar
  12. Elser, J. J., D. R. Dobberfuhl, N. A. MacKay & J. H. Schampel, 1996. Organism size, life history, and N:P stoichiometry. BioScience 46: 674–684.CrossRefGoogle Scholar
  13. Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.CrossRefPubMedGoogle Scholar
  14. Galat, D. L., E. L. Lider, S. Vigg & S. R. Robertson, 1981. Limnology of a large, deep, North American terminal lake, Pyramid Lake, Nevada. Hydrobiologia 82: 281–317.CrossRefGoogle Scholar
  15. Gliwicz, Z. M., W. A. Wurtsbaugh & A. Ward, 1995. Brine shrimp ecology in the Great Salt Lake, Utah. Performance Report to the Utah Division of Wildlife Resources, Salt Lake City, Utah. 83p.Google Scholar
  16. Gruner, D. S., J. E. Smith, E. W. Seabloom, S. A. Sandin, J. T. Ngai, H. Hillebrand, W. S. Harpole, J. J. Elser, E. E. Cleland, M. E. S. Bracken, E. T. Borer & B. M. Bolker, 2008. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters 11: 740–755.CrossRefPubMedGoogle Scholar
  17. Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. American Naturalist 94: 421–425.CrossRefGoogle Scholar
  18. Harpole, W. S., J. T. Ngai, E. E. Cleland, E. W. Seabloom, E. T. Borer, M. E. Bracken, J. J. Elser, D. S. Gruner, H. Hillebrand, J. B. Shurin & J. E. Smith, 2011. Nutrient co-limitation of primary producer communities. Ecology Letters 14: 852–862.CrossRefPubMedGoogle Scholar
  19. Herbst, D. B., 1998. Potential salinity limitations on nitrogen fixation in sediments from Mono Lake, California. International Journal of Salt Lake Research 7: 261–274.Google Scholar
  20. Hessen, D. O. & S. Kaartvedt, 2014. Top-down cascades in lakes and oceans: different perspectives but same story? Journal of Plankton Research 36: 852–862.CrossRefGoogle Scholar
  21. Javor, B., 1989. Hypersaline Environments. Springer, Berlin.CrossRefGoogle Scholar
  22. Jellison, R. & J. M. Melack, 1988. Photosynthetic activity of phytoplankton and its relation to environmental factors in hypersaline Mono Lake, California. Hydrobiologia 158: 69–88.CrossRefGoogle Scholar
  23. Jellison, R. & J. M. Melack, 1993. Algal photosynthetic activity and its response to meromixis in hypersaline Mono Lake, California. Limnology and Oceanography 38: 818–837.CrossRefGoogle Scholar
  24. Jellison, R. & J. M. Melack, 2001. Nitrogen limitation and particulate elemental ratios of seston in hypersaline Mono Lake, California, U.S.A. Hydrobiologia 466: 1–12.CrossRefGoogle Scholar
  25. Jellison, R., J. Romero & J. M. Melack, 1998. The onset of meromixis during restoration of Mono Lake, California: unintended consequences of reducing water diversions. Limnology and Oceanography 43: 706–711.CrossRefGoogle Scholar
  26. Jones, E. F. & W. A. Wurtsbaugh, 2014. The Great Salt Lake’s monimolimnion and its importance for mercury bioaccumulation in brine shrimp (Artemia franciscana). Limnology and Oceanography 59: 141–155.CrossRefGoogle Scholar
  27. Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.CrossRefGoogle Scholar
  28. Lewis, W. M. & W. A. Wurtsbaugh, 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiology 93: 446–465.CrossRefGoogle Scholar
  29. Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.CrossRefGoogle Scholar
  30. Marcarelli, A. M., W. A. Wurtsbaugh & O. Griset, 2006. Salinity controls phytoplankton response to nutrient enrichment in the Great Salt Lake, Utah, USA. Canadian Journal of Fisheries and Aquatic Sciences 63: 2236–2248.CrossRefGoogle Scholar
  31. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.CrossRefGoogle Scholar
  32. Morris, D. P. & W. M. Lewis, 1988. Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology 20: 315–327.CrossRefGoogle Scholar
  33. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  34. Nydahl, F., 1978. On the peroxodisulphate oxidation of total nitrogen in waters to nitrate. Water Research 12: 1123–1130.CrossRefGoogle Scholar
  35. Power, M. E., 1992. Top-down and bottom-up forces in food webs: do plants have primacy. Ecology 73: 733–746.CrossRefGoogle Scholar
  36. Reeve, M. R., 1963. The filter-feeding of Artemia. I. In pure cultures of plant cells. Journal of Experimental Biology 40: 195–205.Google Scholar
  37. Salm, C. R., J. E. Saros, S. C. Fritz, C. L. Osburn & D. M. Reineke, 2009. Phytoplankton productivity across prairie saline lakes of the Great Plains (USA): a step toward deciphering patterns through lake classification models. Canadian Journal of Fisheries and Aquatic Sciences 66: 1435–1448.CrossRefGoogle Scholar
  38. SAS Institute Inc., 2013. SAS Institute Inc., Cary, NC.Google Scholar
  39. Shurin, J. B., D. S. Gruner & H. Hillebrand, 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society of London B: Biological Sciences 273: 1–9.CrossRefGoogle Scholar
  40. Smith, V. H., 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnology and Oceanography 27: 1101–1112.CrossRefGoogle Scholar
  41. Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14: 799–801.CrossRefGoogle Scholar
  42. Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lurling, J. C. Molinero, W. M. Mooij, E. van Donk & M. Winder, 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.CrossRefGoogle Scholar
  43. Stephens, D. W. & D. M. Gillespie, 1976. Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnology and Oceanography 21: 74–87.CrossRefGoogle Scholar
  44. Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48: 1031–1049.CrossRefGoogle Scholar
  45. Triantaphyllidis, G. V., G. R. Criel, T. J. Abatzopoulos & P. Sorgeloos, 1997. International study on Artemia: LVII. Morphological study of Artemia with emphasis to Old World strains: 1. Bisexual populations. Hydrobiologia 357: 139–153.CrossRefGoogle Scholar
  46. Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.CrossRefGoogle Scholar
  47. Vanni, M. J., 1987. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68: 624–635.CrossRefGoogle Scholar
  48. Waiser, M. J. & R. D. Robarts, 2000. Changes in the composition and reactivity of allochthonous DOM in a prairie saline lake. Limnology and Oceanography 45: 763–774.CrossRefGoogle Scholar
  49. Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992.CrossRefGoogle Scholar
  50. Williams, W. D., 2001. Anthropogenic salinization of inland waters. Hydrobiologia 466: 329–337.CrossRefGoogle Scholar
  51. Wurtsbaugh, W. A., 1988. Iron, molybdenum and phosphorus limitation of N2 fixation maintains nitrogen deficiency of plankton in the Great Salt Lake drainage (Utah, USA). Verhandlungen der Internationalen Vereingung fur Theoretische und Angewandte Limnologie 23: 121–130.Google Scholar
  52. Wurtsbaugh, W. A., 1992. Food web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89: 168–175.CrossRefGoogle Scholar
  53. Wurtsbaugh, W. A., 2014. The Great Salt Lake Ecosystem (Utah, USA): long term data and a structural equation approach: comment. Ecosphere 5: 1–8.CrossRefGoogle Scholar
  54. Wurtsbaugh, W. A. & T. S. Berry, 1990. Cascading effects of decreased salinity on the plankton chemistry, and physics of the Great Salt Lake (Utah). Canadian Journal of Fisheries and Aquatic Sciences 47: 100–109.CrossRefGoogle Scholar
  55. Wurtsbaugh, W. A. & Z. M. Gliwicz, 2001. Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah. Hydrobiologia 466: 119–132.CrossRefGoogle Scholar
  56. Wurtsbaugh, W. A., D. Naftz, & S. Bradt, 2006. Spatial analyses of trophic linkages between basins in the Great Salt Lake. Division of Forestry, Fire & State Lands, Salt Lake City. http://digitalcommons.usu.edu/wats_facpub/543.
  57. Wurtsbaugh, W. A., J. Gardberg & C. Izdepski, 2011. Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA). Science of the Total Environment 409: 4425–4434.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biology and the Ecology CenterUtah State UniversityLoganUSA
  2. 2.Watershed Sciences Department and the Ecology CenterUtah State UniversityLoganUSA
  3. 3.Wildland Resources DepartmentUtah State UniversityLoganUSA
  4. 4.Ecology CenterUtah State UniversityLoganUSA

Personalised recommendations