Advertisement

Hydrobiologia

, Volume 784, Issue 1, pp 249–264 | Cite as

Habitat structure shaping megabenthic communities inhabiting subtidal soft bottoms along the Algarve coast (Portugal)

  • Marta M. Rufino
  • Alexandre M. Pereira
  • Fábio Pereira
  • Paula Moura
  • Paulo Vasconcelos
  • Miguel B. Gaspar
Primary Research Paper

Abstract

The present study analysed the megabenthic diversity in subtidal soft bottoms and assessed the main environmental drivers of megabenthic community organisation along the Algarve coast (southern Portugal). We tested the hypothesis that megabenthic communities respond to the same environmental drivers than macrofauna. We found that similar to macrofauna, megafaunal communities were organised in relation to the depth of closure, light reaching the bottom, and the hydrodynamic conditions related with exposure within the shallower areas. The influence of the main river outflow prevailed over other drivers, but only up to 9 m depth. We found that seven different spatial units should be considered, each characterised by different indicator species. Additionally, among a total of 412 taxa collected between 4 and 50 m depth, we provide the characteristics of the 64 commonest species in terms of occurrence, frequency, distribution, abundance, bathymetric and sedimentary preferences, which constitutes most valuable information for ecosystem modelling. Megabenthic alpha diversity decreased with depth, contrary to evenness and was higher in the proximity of the river Guadiana and in highly exposed shores. We conclude that the megafauna, which is significantly quicker to collect and analyse, can provide an accurate alternative to macrofauna sampling, as their communities are shaped by the same drivers.

Graphical Abstract

Keywords

Subtidal megabenthic communities Spatial scale Alpha diversity Community composition Coastal zone 

Notes

Acknowledgments

The authors would like to acknowledge the crew of the RV “Diplodus” for their professionalism in conducting the sampling surveys and the IPMA technical staff for their helpful assistance in collecting and sampling the biological material. Marta M. Rufino is funded by a post-doctoral grant of IPMA, within the EU project SAFI (FP7-SPACE-2013-1, grant agreement nº 607155). Paulo Vasconcelos is funded by a post-doctoral grant (SFRH/BPD/26348/2006) awarded by the Fundação para a Ciência e Tecnologia (FCT - Portugal). Species identified in this study, with the respective abundance and biomass are archived in the PANGAEA database at the Alfred Wegener Institute for Polar and Marine Research (https://doi.pangaea.de/10.1594/PANGAEA.859802). The authors also thank two anonymous reviewers for their valuable comments and suggestions that improved the revised version of the manuscript.

References

  1. Almeida, L. P., Ó. Ferreira, M. I. Vousdoukas & G. Dodet, 2011. Historical variation and trends in storminess along the Portuguese South Coast. Natural Hazards and Earth System Science 11(9): 2407–2417.CrossRefGoogle Scholar
  2. Beaumont, N. J., M. C. Austen, J. P. Atkins, D. Burdon, S. Degraer, T. P. Dentinho, S. Derous, P. Holm, T. Horton, E. van Ierland, A. H. Marboe, D. J. Starkey, M. Townsend & T. Zarzycki, 2007. Identification, definition and quantification of goods and services provided by marine biodiversity: implications for the ecosystem approach. Marine Pollution Bulletin 54(3): 253–265.CrossRefPubMedGoogle Scholar
  3. Beyst, B., D. Buysse, A. Dewicke & J. Mees, 2001. Surf zone hyperbenthos of Belgian Sandy beaches: seasonal patterns. Estuarine, Coastal and Shelf Science 53(6): 877–895.CrossRefGoogle Scholar
  4. Bianchi, C. N. & C. Morri, 2000. Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Marine Pollution Bulletin 40(5): 367–376.CrossRefGoogle Scholar
  5. Bivand, R. S., Pebesma, E. & V. Gomez-Rubio. 2008. Applied spatial data analysis with R UseR! series, Springer. 2nd edn. 2013, xviii+405 pp.Google Scholar
  6. Briggs, J. C. & B. W. Bowen, 2012. A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography 39(1): 12–30.CrossRefGoogle Scholar
  7. Carvalho, S., M. R. Cunha, F. Pereira, P. Pousão-Ferreira, M. Santos & M. Gaspar, 2012. The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast. Helgoland Marine Research 66(4): 489–501.CrossRefGoogle Scholar
  8. Catalán, I. A., M. T. Jiménez, J. I. Alconchel, L. Prieto & J. L. Muñoz, 2006. Spatial and temporal changes of coastal demersal assemblages in the Gulf of Cadiz (SW Spain) in relation to environmental conditions. Deep Sea Research Part II: Topical Studies in Oceanography 53(11–13): 1402–1419.CrossRefGoogle Scholar
  9. Chícharo, L., A. Chicharo, M. Gaspar, F. Alves & J. Regala, 2002a. Ecological characterization of dredged and non-dredged bivalve fishing areas off south Portugal. Journal of the Marine Biological Association of the UK 82: 41–50.Google Scholar
  10. Chícharo, L., J. Regala, M. Gaspar, F. Alves & A. Chícharo, 2002b. Macrofauna spatial differences within clam dredge-tracks and their implications for short-term fishing effect studies. Fisheries Research 54(3): 349–354.CrossRefGoogle Scholar
  11. Ciavola, P., R. Taborda, O. Ferreira & J. A. Dias, 1997. Field observations of sand-mixing depths on steep beaches. Marine Geology 141(1–4): 147–156.CrossRefGoogle Scholar
  12. Coll, M., C. Piroddi, J. Steenbeek, K. Kaschner, F. B. R. Lasram, J. Aguzzi, E. Ballesteros, C. N. Bianchi, J. Corbera, T. Dailianis, R. Danovaro, M. Estrada, C. Froglia, B. S. Galil, J. M. Gasol, R. Gertwagen, J. Gil, F. Guilhaumon, K. Kesner-Reyes, M. S. Kitsos, A. Koukouras, N. Lampadariou, E. Laxamana, C. M. L. F. de la Cuadra, H. K. Lotze, D. Martin, D. Mouillot, D. Oro, S. Raicevich, J. Rius-Barile, J. I. Saiz-Salinas, C. San Vicente, S. Somot, J. Templado, X. Turon, D. Vafidis, R. Villanueva & E. Voultsiadou, 2010. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5(8): e11842.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Costa, M., 1994. Agitação marítima na costa portuguesa. Anais do Instituto Hidrográfico 13(1994): 35–40.Google Scholar
  14. Cressie, N. A. C., 1991. Statistics for Spatial Data. Wiley, New York.Google Scholar
  15. De’Ath, G., 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83(4): 1105–1117.Google Scholar
  16. De’ath, G. & K. E. Fabricius, 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11): 3178–3192.CrossRefGoogle Scholar
  17. de Cáceres, M. & P. Legendre, 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90(12): 3566–3574.CrossRefPubMedGoogle Scholar
  18. De Cáceres, M., P. Legendre & M. Moretti, 2010. Improving indicator species analysis by combining groups of sites. Oikos 119(10): 1674–1684.CrossRefGoogle Scholar
  19. Dolbeth, M., I. Viegas, F. Martinho, J. C. Marques & M. A. Pardal, 2006. Population structure and species dynamics of Spisula solida, Diogenes pugilator and Branchiostoma lanceolatum along a temporal-spatial gradient in the south coast of Portugal. Estuarine, Coastal and Shelf Science 66(1–2): 168–176.CrossRefGoogle Scholar
  20. Dolbeth, M., O. Ferreira, H. Teixeira, J. C. Marques, J. A. Dias & M. A. Pardal, 2007. Beach morphodynamic impact on a macrobenthic community along a subtidal depth gradient. Marine Ecology Progress Series 352: 113–124.CrossRefGoogle Scholar
  21. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67(3): 345–366.Google Scholar
  22. Ferreira, Ó., P. Ciavola, R. Taborda, M. Bairros & J. A. Dias, 2000. Sediment mixing depth determination for steep and gentle foreshores. Journal of Coastal Research 16(3): 830–839.Google Scholar
  23. Freitas, R., F. Ricardo, F. Pereira, L. Sampaio, S. Carvalho, M. Gaspar, V. Quintino & A. M. Rodrigues, 2011. Benthic habitat mapping: concerns using a combined approach (acoustic, sediment and biological data). Estuarine, Coastal and Shelf Science 92(4): 598–606.CrossRefGoogle Scholar
  24. García-Lafuente, J., J. Delgado, F. Criado-Aldeanueva, M. Bruno, J. del Río & J. M. Vargas, 2006. Water mass circulation on the continental shelf of the Gulf of Cadiz. Deep Sea Research Part II: Topical Studies in Oceanography 53(11): 1182–1197.CrossRefGoogle Scholar
  25. Gaspar, M. B., M. Castro & C. C. Monteiro, 1999. Effect of tooth spacing and mesh size on the catch of the Portuguese clam and razor clam dredge. ICES Journal of Marine Science 56(1): 103–110.CrossRefGoogle Scholar
  26. Gaspar, M. B., F. Leitao, M. N. Santos, M. Sobral, L. Chícharo, A. Chícharo & C. C. Monteiro, 2002. Influence of mesh size and tooth spacing on the proportion of damaged organisms in the catches of the Portuguese clam dredge fishery. ICES Journal of Marine Science 59(6): 1228–1236.CrossRefGoogle Scholar
  27. Gaspar, M. B., F. Leitao, M. N. Santos, L. Chícharo, M. D. Dias, A. Chícharo & C. C. Monteiro, 2003. A comparison of direct macrofaunal mortality using three types of clam dredges. ICES Journal of Marine Science 60(4): 733–742.CrossRefGoogle Scholar
  28. Janssen, G. & S. Mulder, 2005. Zonation of macrofauna across sandy beaches and surf zones along the Dutch coast. Oceanologia 47(2): 265.Google Scholar
  29. Lloret, J., 2010. Human health benefits supplied by Mediterranean marine biodiversity. Marine Pollution Bulletin 60(10): 1640–1646.CrossRefPubMedGoogle Scholar
  30. Magalhães, F., 2001. Os sedimentos da plataforma continental portuguesa: contrastes espaciais, perspectiva temporal, potencialidades económicas. Universidade Nova de Lisboa, Lisbon.Google Scholar
  31. Magurran, A. E., H. L. Queiroz & A. P. Hercos, 2013. Relationship between evenness and body size in species rich assemblages. Biology Letters 9(6): 20130856.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Marina, P., J. L. Rueda, J. Urra, C. Salas, S. Gofas, J. E. García Raso, F. Moya, T. García, N. López-González & R. Laiz-Carrión, 2015. Sublittoral soft bottom assemblages within a marine protected area of the northern Alboran Sea. Journal of the Marine Biological Association of the UK 95(5): 1–14.CrossRefGoogle Scholar
  33. Martins, R., V. Quintino & A. M. Rodrigues, 2013a. Diversity and spatial distribution patterns of the soft-bottom macrofauna communities on the Portuguese continental shelf. Journal of Sea Research 83: 173–186.CrossRefGoogle Scholar
  34. Martins, R., L. Sampaio, A. M. Rodrigues & V. Quintino, 2013b. Soft-bottom Portuguese continental shelf polychaetes: diversity and distribution. Journal of Marine Systems 123–124: 41–54.CrossRefGoogle Scholar
  35. Martins, R., L. Sampaio, V. Quintino & A. M. Rodrigues, 2014. Diversity, distribution and ecology of benthic molluscan communities on the Portuguese continental shelf. Journal of Sea Research 93: 75–89.CrossRefGoogle Scholar
  36. McLachlan, A., 1983. Sandy Beach Ecology—A Review Sandy Beaches as Ecosystems. Springer, New York: 321–380.CrossRefGoogle Scholar
  37. Moita, I., 1986. Carta dos sedimentos superfiais. Notícia explicativa da folha SED 7 e 8. Instituto Hidrográfico, Lisboa, 18.Google Scholar
  38. Monteiro, P., L. Bentes, F. Oliveira, C. M. L. Afonso, M. O. Rangel & J. M. S. Gonçalves, 2015. EUNIS habitat’s thresholds for the Western coast of the Iberian Peninsula – a Portuguese case study. Journal of Sea Research 100: 22–31.CrossRefGoogle Scholar
  39. Moura, D., L. Albardeiro, C. Veiga-Pires, T. Boski & E. Tigano, 2006. Morphological features and processes in the central Algarve rocky coast (South Portugal). Geomorphology 81(3–4): 345–360.CrossRefGoogle Scholar
  40. Narváez, D. A., D. M. Munroe, E. E. Hofmann, J. M. Klinck, E. N. Powell, R. Mann & E. Curchitser, 2015. Long-term dynamics in Atlantic surfclam (Spisula solidissima) populations: the role of bottom water temperature. Journal of Marine Systems 141: 136–148.CrossRefGoogle Scholar
  41. Nicholls, R. J., W. A. Birkemeier & G.-H. Lee, 1998. Evaluation of depth of closure using data from Duck, NC, USA. Marine Geology 148(3–4): 179–201.CrossRefGoogle Scholar
  42. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, B. O’Hara, G. L., M. Simpson, P. Solymos, H. H.Stevens & H. Wagner, 2015. Vegan: community ecology Package. R package version 2.3-0. edn. http://CRAN.R-project.org/package=vegan.
  43. Olszewski, T. D., 2004. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104(2): 377–387.CrossRefGoogle Scholar
  44. Pacheco, A., J. Horta, C. Loureiro & Ó. Ferreira, 2015. Retrieval of nearshore bathymetry from Landsat 8 images: a tool for coastal monitoring in shallow waters. Remote Sensing of Environment 159: 102–116.CrossRefGoogle Scholar
  45. Pebesma, E. J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30(7): 683–691.CrossRefGoogle Scholar
  46. Pebesma, E. J. & R. S. Bivand, 2005. Classes and methods for spatial data in R. R News 5(2): 9–13.Google Scholar
  47. Pires, H. N. O., 1989. O clima de Portugal, Alguns Aspectos do Clima de Agitação Marítima de Interesse para a Navegação na Costa de Portugal. In: (INMG), I. N. d. M. e. G. (ed). Lisboa, 34.Google Scholar
  48. Prieto, L., G. Navarro, S. Rodríguez-Gálvez, I. E. Huertas, J. M. Naranjo & J. Ruiz, 2009. Oceanographic and meteorological forcing of the pelagic ecosystem on the Gulf of Cadiz shelf (SW Iberian Peninsula). Continental Shelf Research 29(17): 2122–2137.CrossRefGoogle Scholar
  49. Pubill, E., P. Abelló, M. Ramón & M. Baeta, 2011. Faunistic assemblages of a sublittoral coarse sand habitat of the northwestern Mediterranean. Scientia Marina 75(1): 189–196.CrossRefGoogle Scholar
  50. R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  51. Reyes, J. L., J. T. Martins, J. Benavente, Ó. Ferreira, F. J. Gracia, J. M. Alveirinho-Dias & F. López-Aguayo, 1999. Gulf of Cadiz beaches: A comparative response to storm events. Boletín-Instituto Español de Oceanografía 15(1–4): 221–228.Google Scholar
  52. Rosa, F., M. M. Rufino, Ó. Ferreira, A. Matias, A. Brito & M. Gaspar, 2013. The influence of coastal processes on inner shelf sediment distribution: the Eastern Algarve Shelf (Southern Portugal). Geologica Acta 11(1): 59–73.Google Scholar
  53. Rosenberg, R., 1995. Benthic marine fauna structured by hydrodynamic processes and food availability. Netherlands Journal of Sea Research 34(4): 303–317.CrossRefGoogle Scholar
  54. Rueda, J. L., C. Salas & S. Gofas, 2000. A molluscan community from coastal bioclastic bottoms in Strait of Gibraltar area. Iberus 18(1): 95–123.Google Scholar
  55. Rufino, M. M., M. Gaspar, F. Maynou & C. C. Monteiro, 2008. Regional and temporal changes in bivalve diversity in the south coast of Portugal. Estuarine, Coastal and Shelf Science 80: 517–528.CrossRefGoogle Scholar
  56. Rufino, M. M., M. Gaspar, A. Pereira, F. Maynou & C. C. Monteiro, 2010. Ecology of megabenthic bivalve communities from sandy beaches on the south coast of Portugal. Scientia Marina 74(1): 163–178.CrossRefGoogle Scholar
  57. San Vicente, C. & J. C. Sorbe, 1999. Spatio-temporal structure of the suprabenthic community from Creixell beach (western Mediterranean). Acta Oecologica 20(4): 377–389.CrossRefGoogle Scholar
  58. Schlacher, T. A., J. Dugan, D. S. Schoeman, M. Lastra, A. Jones, F. Scapini, A. McLachlan & O. Defeo, 2007. Sandy beaches at the brink. Diversity and Distributions 13(5): 556–560.CrossRefGoogle Scholar
  59. Sharma, S., P. Legendre, D. Boisclair, S. Gauthier & S. J. Smith, 2012. Effects of spatial scale and choice of statistical model (linear versus tree-based) on determining species–habitat relationships. Canadian Journal of Fisheries and Aquatic Sciences 69(12): 2095–2111.CrossRefGoogle Scholar
  60. Silva, L., Y. Vila, M. Angeles Torres, I. Sobrino & J. J. Acosta, 2011. Cephalopod assemblages, abundance and species distribution in the Gulf of Cadiz (SW Spain). Aquatic Living Resources 24(01): 13–26.CrossRefGoogle Scholar
  61. Vila, Y., I. Sobrino & M. Paz Jiménez, 2013. Fishery and life history of spot-tail mantis shrimp, Squilla mantis (Crustacea: Stomatopoda), in the Gulf of Cadiz (eastern central Atlantic). Scientia Marina 77(1): 137–148.CrossRefGoogle Scholar
  62. Wang, Y., U. Naumann, S. T. Wright & D. I. Warton, 2012. mvabund – an R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution: no-noGoogle Scholar
  63. Warton, D. I., S. D. Foster, G. De’ath, J. Stoklosa & P. K. Dunstan, 2014. Model-based thinking for community ecology. Plant Ecology: 1–14Google Scholar
  64. Warton, D. I., S. T. Wright & Y. Wang, 2012. Distance based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution 3: 89.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto Português do Mar e da Atmosfera (IPMA, I.P)LisbonPortugal
  2. 2.Instituto Português do Mar e da Atmosfera (IPMA, I.P)OlhãoPortugal
  3. 3.Departamento de Biologia, Centro de Estudos do Ambiente e do Mar (CESAM)Universidade de AveiroAveiroPortugal
  4. 4.Centro de Ciências do Mar (CCMAR)Universidade do AlgarveFaroPortugal

Personalised recommendations