, Volume 784, Issue 1, pp 187–199 | Cite as

Trophic signatures of co-existing invasive and indigenous mussels: selective feeding or different metabolic pathways?

  • Eleonora PuccinelliEmail author
  • Margaux Noyon
  • Christopher D. McQuaid
Primary Research Paper


Species invasions can have profound ecological impacts, including changes in patterns of distribution, abundance and diversity of native species, altering food-web dynamics and ecosystem functioning. In the marine benthic environment temperature, predation, competition for space and wave action exposure are some of the main factors that determine invasion success; however, the importance of food availability for invasive species has been underestimated. The present study investigates the diets of two mussel species, Mytilus galloprovincialis and Perna perna, that occur in mixed-species mussel beds, using fatty acid (FA) and stable isotope (SI) approaches over two periods of time in 2012 and 2014. With the exception of one site, we found no significant differences in the SI signatures between species, while strong dissimilarities were present in their FA signatures. Both species showed signatures of exposure to good food quality, however, neither showed links to specific dietary trophic markers. The FA differences observed between species could be related to food selectivity by one or both species or more likely by different metabolic pathways. Further investigations are needed to clarify the pattern observed; however, the results suggested that the food environment was not an important factor in determining the success of the invasive species.


Intertidal Trophic ecology Fatty acid Stable isotope Invertebrate Rocky shore 



This work was supported by funding from the Andrew Mellon Foundation and the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation. We acknowledge the IsoEnvironmental, Stable Isotope Laboratory, Rhodes University, the Stable Isotope Laboratory of the Mammal Research Institute, University of Pretoria and the Centre Analytical Facilities at Stellenbosch University, where the analyses were conducted. Special thanks go to the Coastal Research Group of Rhodes University.


  1. Ackman, R. G., 2002. The gas chromatograph in practical analyses of common and uncommon fatty acids for the 21st century. Analytica Chimica Acta 465: 175–192.CrossRefGoogle Scholar
  2. Alexander, M. E., R. Adams, J. T. A. Dick & T. B. Robinson, 2015. Forecasting invasions: resource use by mussels informs invasion patterns along the South African coast. Marine Biology 162: 2493–2500.CrossRefGoogle Scholar
  3. Alkanani, T., C. C. Parrish, R. J. Thompson & C. H. McKenzie, 2007. Role of fatty acids in cultured mussels, Mytilus edulis, grown in Notre Dame Bay, Newfoundland. Journal of Experimental Marine Biology and Ecology 348: 33–45.CrossRefGoogle Scholar
  4. Anderson, M. & C. T. Braak, 2003. Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation 73: 85–113.CrossRefGoogle Scholar
  5. Anderson, M., R. Gorley & K. Clarke, 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E Ltd, Plymouth.Google Scholar
  6. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  7. Andrews, W. R. H. & L. Hutchings, 1980. Upwelling in the Southern Benguela current. Progress in Oceanography 9: 1–81.CrossRefGoogle Scholar
  8. Assis, J., M. Zupan, K. R. Nicastro, G. I. Zardi, C. D. McQuaid & E. A. Serrão, 2015. Oceanographic conditions limit the spread of a marine invader along Southern African shores. PLoS One 10: e0128124.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baker, S. M. & J. S. Levinton, 2003. Selective feeding by three native North American freshwater mussels implies food competition with zebra mussels. Hydrobiologia 505: 97–105.CrossRefGoogle Scholar
  10. Bax, N., A. Williamson, M. Aguero, E. Gonzalez & W. Geeves, 2003. Marine invasive alien species: a threat to global biodiversity. Marine Policy 27: 313–323.CrossRefGoogle Scholar
  11. Berman, J. & J. T. Carlton, 1991. Marine invasion processes: interactions between native and introduced marsh snails. Journal of Experimental Marine Biology and Ecology 150: 267–281.CrossRefGoogle Scholar
  12. Bownes, S. J. & C. D. McQuaid, 2006. Will the invasive mussel Mytilus galloprovincialis Lamarck replace the indigenous Perna perna Linnaeus on the south coast of South Africa? Journal of Experimental Marine Biology and Ecology 338: 140–151.CrossRefGoogle Scholar
  13. Bownes, S. J. & C. D. McQuaid, 2010. Mechanisms of habitat segregation between an invasive (Mytilus galloprovincialis) and an indigenous (Perna perna) mussel: adult growth and mortality. Marine Biology 157: 1799–1810.CrossRefGoogle Scholar
  14. Branch, G., C. L. Griffiths, M. L. Branch & L. E. Beckley, 2007. Two Oceans: A Guide to the Marine Life of Southern Africa. Struik Pub, Cape Town.Google Scholar
  15. Budge, S. & A. Springer, 2007. Fatty acid biomarkers reveal niche separation in an Arctic benthic food web. Marine Ecology Progress Series 336: 305–309.CrossRefGoogle Scholar
  16. Budge, S. M., S. J. Iverson & H. N. Koopman, 2006. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Marine Mammal Science 22: 759–801.CrossRefGoogle Scholar
  17. Bustamante, R. H. & G. M. Branch, 1996. The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa. Journal of Experimental Marine Biology and Ecology 196: 1–28.CrossRefGoogle Scholar
  18. Clarke, K. R. & R. N. Gorley, 2006. Primer V6: User Manual - Tutorial. Marine Laboratory, Plymouth.Google Scholar
  19. Claudet, J. & S. Fraschetti, 2010. Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biological Conservation 143: 2195–2206.CrossRefGoogle Scholar
  20. Connolly, S. R., B. A. Menge & J. Roughgarden, 2001. A latitudinal gradient in recruitment of intertidal invertebrates in the northeast. Pacific Ocean Ecology 82: 1799–1813.Google Scholar
  21. Cotonnec, G., C. Brunet, B. Sautour & G. Thoumelin, 2001. Nutritive value and selection of food particles by copepods during a spring bloom of Phaeocystis sp. in the English Channel, as determined by pigment and fatty acid analyses. Journal of Plankton Research 23: 693–703.CrossRefGoogle Scholar
  22. Dalsgaard, J., M. St. John, G. Kattner, D. Müller-Navarra & W. Hagen, 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology. Academic Press: 225–340 [available on internet at].
  23. DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.CrossRefGoogle Scholar
  24. DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–351.CrossRefGoogle Scholar
  25. Espinosa, E. P., R. M. Cerrato, G. H. Wikfors & B. Allam, 2016. Modeling food choice in the two suspension-feeding bivalves, Crassostrea virginica and Mytilus edulis. Marine Biology 163: 1–13.CrossRefGoogle Scholar
  26. Foster-Smith, R. L., 1975. The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis pullastra (Montagu). Journal of Experimental Marine Biology and Ecology 17: 1–22.CrossRefGoogle Scholar
  27. Grant, W. S. & M. I. Cherry, 1985. Mytilus galloprovincialis Lmk. in southern Africa. Journal of Experimental Marine Biology and Ecology 90: 179–191.CrossRefGoogle Scholar
  28. Griffiths, C. L., T. B. Robinson & A. Mead, 2009. The status and distribution of marine alien species in South Africa. In Rilov, D. G. & D. J. A. Crooks (eds), Biological Invasions in Marine Ecosystems. Springer, Berlin: 393–408 [available on internet at].
  29. Grosholz, E., 2002. Ecological and evolutionary consequences of coastal invasions. Trends in Ecology & Evolution 17: 22–27.CrossRefGoogle Scholar
  30. Hansson, S., J. E. Hobbie, R. Elmgren, U. Larsson, B. Fry & S. Johansson, 1997. The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology 78: 2249–2257.CrossRefGoogle Scholar
  31. Heidman, M. K., L. L. Holley, R. M. Chambers & S. L. Sanderson, 2012. Selective feeding on nutrient-rich particles by gizzard shad Dorosoma cepedianum does not involve mechanical sorting. Aquatic Biology 17: 129–139.CrossRefGoogle Scholar
  32. Hill, J. M. & C. D. McQuaid, 2009. Effects of food quality on tissue-specific isotope ratios in the mussel Perna perna. Hydrobiologia 635: 81–94.CrossRefGoogle Scholar
  33. Hill, J. M., C. D. McQuaid & S. Kaehler, 2006. Biogeographic and nearshore–offshore trends in isotope ratios of intertidal mussels and their food sources around the coast of southern Africa. Marine Ecology Progress Series 318: 63–73.CrossRefGoogle Scholar
  34. Hobson, K. & H. Welch, 1992. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15 N analysis. Marine Ecology Progress Series 84: 9–18.CrossRefGoogle Scholar
  35. Hockey, P. A. R. & C. van Erkom Schurink, 1992. The invasive biology of the mussel Mytilus galloprovincialis on the southern African coast. Transactions of the Royal Society of South Africa 48: 123–139.CrossRefGoogle Scholar
  36. Huston, M. A. & S. Wolverton, 2009. The global distribution of net primary production: resolving the paradox. Ecological Monographs 79: 343–377.CrossRefGoogle Scholar
  37. Iglesias, J. I. P., E. Navarro, P. Alvarez Jorna & I. Armentina, 1992. Feeding, particle selection and absorption in cockles Cerastoderma edule (L.) exposed to variable conditions of food concentration and quality. Journal of Experimental Marine Biology and Ecology 162: 177–198.CrossRefGoogle Scholar
  38. Indarti, E., M. I. A. Majid, R. Hashim & A. Chong, 2005. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis 18: 161–170.CrossRefGoogle Scholar
  39. Irisarri, J., M. J. Fernández-Reiriz, S. M. C. Robinson, P. J. Cranford & U. Labarta, 2013. Absorption efficiency of mussels Mytilus edulis and Mytilus galloprovincialis cultured under integrated multi-trophic aquaculture conditions in the Bay of Fundy (Canada) and Ría Ares-Betanzos (Spain). Aquaculture 388–391: 182–192.CrossRefGoogle Scholar
  40. Iverson, S. J., 2009. Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In Kainz, M., M. T. Brett & M. T. Arts (eds), Lipids in Aquatic Ecosystems. Springer, New York: 281–308 [available on internet at].
  41. Iverson, S. J., K. J. Frost & L. F. Lowry, 1997. Fatty acid signatures reveal fine scale structure of foraging distribution of harbour seals and their prey in Prince William Sound. Oceanographic Literature Review 44 [available on internet at].
  42. Jónasdóttir, S. H., 1994. Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica: laboratory observations. Marine Biology 121: 67–81.CrossRefGoogle Scholar
  43. Kanazawa, A., S.-I. Teshima & K. Ono, 1979. Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 63: 295–298.CrossRefGoogle Scholar
  44. Leverone, J. R., 1995. Growth and survival of caged adult bay scallops (Argopecten irradians concentricusz) in Tampa Bay with respect to levels of turbidity, suspended solids and chlorophyll a. Florida Scientis 58: 216–227.Google Scholar
  45. Lutjeharms, J. R. E., 2006. The Agulhas Current. Springer, Berlin.Google Scholar
  46. McDonald, P. S., G. C. Jensen & D. A. Armstrong, 2001. The competitive and predatory impacts of the nonindigenous crab Carcinus maenas (L.) on early benthic phase Dungeness crab Cancer magister Dana. Journal of Experimental Marine Biology and Ecology 258: 39–54.CrossRefPubMedGoogle Scholar
  47. McLeod, R., R. Frew, G. Hyndes & C. Hurd, 2013. Unexpected shifts in fatty acid composition in response to diet in a common littoral amphipod. Marine Ecology Progress Series 479: 1–12.CrossRefGoogle Scholar
  48. McQuaid, C. D. & F. Arenas, 2009. Biological Invasions. In Wahl, M. (ed.), Marine Hard Bottom Communities. Springer, Berlin: 309–320 [available on internet at].
  49. McQuaid, C. D. & B. P. Mostert, 2010. The effects of within-shore water movement on growth of the intertidal mussel Perna perna: an experimental field test of bottom-up control at centimetre scales. Journal of Experimental Marine Biology and Ecology 384: 119–123.CrossRefGoogle Scholar
  50. McQuaid, C., F. Porri, K. Nicastro & G. Zardi, 2015. Simple, scale--dependent patterns emerge from very complex effects—an example from the Intertidal mussels Mytilus galloprovincialis and Perna perna. Oceanography and Marine Biology: An annual Review. CRC Press: 127–156 [available on internet at].
  51. Meng, L. & J. J. Orsi, 1991. Selective predation by larval striped bass on native and introduced copepods. Transactions of the American Fisheries Society 120: 187–192.CrossRefGoogle Scholar
  52. Müller-Navarra, D. & W. Lampert, 1996. Seasonal patterns of food limitation in Daphnia galeata: separating food quantity and food quality effects. Journal of Plankton Research 18: 1137–1157.CrossRefGoogle Scholar
  53. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  54. Pirini, M., M. P. Manuzzi, A. Pagliarani, F. Trombetti, A. R. Borgatti & V. Ventrella, 2007. Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 147: 616–626.CrossRefGoogle Scholar
  55. Puccinelli, E., M. Noyon & C. McQuaid, 2016a. Hierarchical effects of biogeography and upwelling shape the dietary signatures of benthic filter feeders. Marine Ecology Progress Series 543: 37–54.CrossRefGoogle Scholar
  56. Puccinelli, E., M. Noyon & C. D. McQuaid, 2016b. Does proximity to urban centres affect the dietary regime of marine benthic filter feeders? Estuarine, Coastal and Shelf Science 169: 147–157.CrossRefGoogle Scholar
  57. Raimondi, P. T., 1990. Patterns, mechanisms, consequences of variability in settlement and recruitment of an intertidal barnacle. Ecological Monographs 60: 283–309.CrossRefGoogle Scholar
  58. Rius, M. & C. D. McQuaid, 2006. Wave action and competitive interaction between the invasive mussel Mytilus galloprovincialis and the indigenous Perna perna in South Africa. Marine Biology 150: 69–78.CrossRefGoogle Scholar
  59. Rius, M. & C. D. McQuaid, 2009. Facilitation and competition between invasive and indigenous mussels over a gradient of physical stress. Basic and Applied Ecology 10: 607–613.CrossRefGoogle Scholar
  60. Robinson, T. B., C. L. Griffiths, C. D. McQuaid & M. Rius, 2005. Marine alien species of South Africa – status and impacts. African Journal of Marine Science 27: 297–306.CrossRefGoogle Scholar
  61. Rohde, K., 1999. Latitudinal gradients in species diversity and rapport’s rule revisited: a review of recent work and what can parasites teach us about the causes of the gradients? Ecography 22: 593–613.CrossRefGoogle Scholar
  62. Schlechtriem, C., M. T. Arts & O. E. Johannsson, 2008. Effect of long-term fasting on the use of fatty acids as trophic markers in the opossum shrimp Mysis relicta—A laboratory study. Journal of Great Lakes Research 34: 143–152.CrossRefGoogle Scholar
  63. Schneider, K. R. & B. Helmuth, 2007. Spatial variability in habitat temperature may drive patterns of selection between an invasive and native mussel species. Marine Ecology Progress Series 339: 157–167.CrossRefGoogle Scholar
  64. Shannon, L. V., L. Hutchings, G. W. Bailey & P. A. Shelton, 1984. Spatial and temporal distribution of chlorophyll in southern African waters as deduced from ship and satellite measurements and their implications for pelagic fisheries. South African Journal of Marine Science 2: 109–130.CrossRefGoogle Scholar
  65. Smith, J. R., P. Fong & R. F. Ambrose, 2009. Spatial patterns in recruitment and growth of the mussel Mytilus californianus (Conrad) in southern and northern California, USA, two regions with differing oceanographic conditions. Journal of Sea Research 61: 165–173.CrossRefGoogle Scholar
  66. Stachowicz, J. J. & J. E. Byrnes, 2006. Species diversity, invasion success, and ecosystem functioning: disentangling the influence of resource competition, facilitation, and extrinsic factors. Marine Ecology Progress Series 311: 251–262.CrossRefGoogle Scholar
  67. Stachowicz, J. J., R. B. Whitlatch & R. W. Osman, 1999. Species diversity and invasion resistance in a marine ecosystem. Science 286: 1577–1579.CrossRefPubMedGoogle Scholar
  68. Stachowicz, J. J., H. Fried, R. W. Osman & R. B. Whitlatch, 2002. Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83: 2575–2590.CrossRefGoogle Scholar
  69. Tagliarolo, M. & C. D. McQuaid, 2015. Sub-lethal and sub-specific temperature effects are better predictors of mussel distribution than thermal tolerance. Marine Ecology Progress Series 535: 145–159.CrossRefGoogle Scholar
  70. Tagliarolo, M., V. Montalto, G. Sara, J. A. Lathlean & C. D. McQuaid, submitted. Dynamic energy budget models explain presence and absence in mussel distribution through non-lethal environmental effects. Marine Ecology Progress Series.Google Scholar
  71. Tenore, K. R. & W. M. Dunstan, 1973. Comparison of feeding and biodeposition of three bivalves at different food levels. Marine Biology 21: 190–195.CrossRefGoogle Scholar
  72. Tieszen, L. L., T. W. Boutton, K. G. Tesdahl & N. A. Slade, 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57: 32–37.CrossRefGoogle Scholar
  73. van Erkom Schurink, C. & C. Griffiths, 1991. A comparison of reproductive cycles and reproductive output in four southern African mussel species. Marine Ecology Progress Series 76: 123–134.CrossRefGoogle Scholar
  74. van Erkom Schurink, C. & C. L. Griffiths, 1993. Factors affecting relative rates of growth in four South African mussel species. Aquaculture 109: 257–273.CrossRefGoogle Scholar
  75. Volkman, J. K., S. W. Jeffrey, P. D. Nichols, G. I. Rogers & C. D. Garland, 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 128: 219–240.CrossRefGoogle Scholar
  76. von der Meden, C. E., F. Porri, C. D. McQuaid & J. Erlandsson, 2008. Coastline topography affects the distribution of indigenous and invasive mussels. Marine Ecology Progress Series 372: 135–145.CrossRefGoogle Scholar
  77. Wacker, A. & E. von Elert, 2001. Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82: 2507–2520.CrossRefGoogle Scholar
  78. Ward, J. E., J. S. Levinton, S. E. Shumway & T. Cucci, 1998. Particle sorting in bivalves: in vivo determination of the pallial organs of selection. Marine Biology 131: 283–292.CrossRefGoogle Scholar
  79. Widdows, J., P. Fieth & C. M. Worrall, 1979. Relation between seston, available food and feeding activity, in the common mussel Mytilus edulis. Marine Biology 50: 195–207.CrossRefGoogle Scholar
  80. Zardi, G. I., K. R. Nicastro, C. D. McQuaid, M. Rius & F. Porri, 2006. Hydrodynamic stress and habitat partitioning between indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussels: constraints of an evolutionary strategy. Marine Biology 150: 79–88.CrossRefGoogle Scholar
  81. Zardi, G. I., K. R. Nicastro, C. D. McQuaid & J. Erlandsson, 2008. Sand and wave induced mortality in invasive (Mytilus galloprovincialis) and indigenous (Perna perna) mussels. Marine Biology 153: 853–858.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eleonora Puccinelli
    • 1
    • 2
    Email author
  • Margaux Noyon
    • 1
    • 3
  • Christopher D. McQuaid
    • 1
  1. 1.Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
  2. 2.Department of Oceanography, Marine Research Institute (MARE)University of Cape TownCape TownSouth Africa
  3. 3.Department of Biological Sciences, Marine Research Institute (MARE)University of Cape TownCape TownSouth Africa

Personalised recommendations