Hydrobiologia

, Volume 784, Issue 1, pp 111–123 | Cite as

Stable isotope analysis confirms substantial differences between subtropical and temperate shallow lake food webs

  • Carlos Iglesias
  • Mariana Meerhoff
  • Liselotte S. Johansson
  • Ivan González-Bergonzoni
  • Néstor Mazzeo
  • Juan Pablo Pacheco
  • Franco Teixeira-de Mello
  • Guillermo Goyenola
  • Torben L. Lauridsen
  • Martin Søndergaard
  • Thomas A. Davidson
  • Erik Jeppesen
Primary Research Paper

Abstract

Differences in trophic web structure in otherwise similar ecosystems as a consequence of direct or indirect effects of ambient temperature differences can lead to changes in ecosystem functioning. Based on nitrogen and carbon stable isotope analysis, we compared the food-web structure in a series of subtropical (Uruguay, 30–35°S) and temperate (Denmark, 55–57°N) shallow lakes. The food-web length was on average one trophic position shorter in the subtropical shallow lakes compared with their temperate counterparts. This may reflect the fact that the large majority of subtropical fish species are omnivores (i.e., feed on more than one trophic level) and have a strong degree of feeding niche overlap. The shapes of the food webs of the subtropical lakes (truncated and trapezoidal) suggest that they are fuelled by a combination of different energy pathways. In contrast, temperate lake food webs tended to be more triangular, likely as a result of more simple pathways with a top predator integrating different carbon sources. The effects of such differences on ecosystem functioning and stability, and the connection with ambient temperature as a major underlying factor, are, however, still incipiently known.

Keywords

Food-web structure Food-web length Omnivory Ecosystem functioning 

References

  1. Arim, M., F. Bozinovic & P. A. Marquet, 2007a. On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos 116: 1524–1530.CrossRefGoogle Scholar
  2. Arim, M., P. A. Marquet & F. M. Jaksic, 2007b. On the relationship between productivity and food chain length at different ecological levels. The American Naturalist 169: 62–72.CrossRefPubMedGoogle Scholar
  3. Beisner, B. E., E. McCauley & F. J. Wrona, 1997. The influence of temperature and food chain length on plankton predator prey dynamics. Canadian Journal of Fisheries and Aquatic Sciences 54: 586–595.Google Scholar
  4. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRefGoogle Scholar
  5. Bunn, S. E., C. Leigh & T. D. Jardine, 2013. Diet-tissue fractionation of δ 15N by consumers from streams and rivers. Limnology and Oceanography 58: 765–773.CrossRefGoogle Scholar
  6. Danger, M., G. Lacroix, S. Ka, D. Corbin & X. Lazzaro, 2009. Food-web structure and functioning of temperate and tropical lakes: a stoichiometric viewpoint. Annales de Limnologie-International Journal of Limnology 45: 11–21.CrossRefGoogle Scholar
  7. Dodson, S. I., S. E. Arnott & K. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81(10): 2662–2679.CrossRefGoogle Scholar
  8. Doi, H., M. J. Vander Zanden & H. Hillebrand, 2012. Shorter food chain length in ancient lakes: evidence from a global synthesis. PLoS One 7(6): e37856.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Elton, C. S., 1927. Animal Ecology. Sidgwick and Jackson, London.Google Scholar
  10. Emmerson, M. C., 2012. The importance of body size, abundance, and food-web structure for ecosystem functioning. In: Solan, M., Aspden, R. J., Paterson, D. M. (Eds.), Marine biodiversity and ecosystem functioning: frameworks, methodologies, and integration. Oxford University Press, Oxford, pp 85–100.Google Scholar
  11. Fry, B., 1991. Stable isotope diagrams of freshwater food webs. Ecology 72: 2293–2297.CrossRefGoogle Scholar
  12. Gelós, M., F. Teixeira-de Mello, G. Goyenola, C. Iglesias, C. Fosalba, F. García-Rodríguez, J. Pacheco, S. García & M. Meerhoff, 2010. Seasonal and diel changes in fish activity and potential cascading effects in subtropical shallow lakes with different water transparency. Hydrobiologia 646: 173–185.CrossRefGoogle Scholar
  13. Glazier, D. S., 2012. Temperature affects food-chain length and macroinvertebrate species richness in spring ecosystems. Freshwater Science 31: 575–585.CrossRefGoogle Scholar
  14. González-Bergonzoni, I., M. Meerhoff, T. Davidson, F. Teixeira-de Mello, A. Baattrup-Pedersen & E. Jeppesen, 2012. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15: 492–503.CrossRefGoogle Scholar
  15. González-Bergonzoni, I., F. Landkildehus, M. Meerhoff, T. L. Lauridsen, K. Özkan, T. A. Davidson, N. Mazzeo & E. Jeppesen, 2014. Fish determine macroinvertebrate food webs and assemblage structure in Greenland subarctic streams. Freshwater Biology 59: 1830–1842.CrossRefGoogle Scholar
  16. González-Bergonzoni, I., E. Jeppesen, N. Vidal, F. Teixeira-de Mello, G. Goyenola, A. López-Rodríguez & M. Meerhoff, 2016. Potential drivers of seasonal shifts in fish omnivory in a subtropical stream. Hydrobiologia 768: 183–196.CrossRefGoogle Scholar
  17. Goyenola, G., C. Iglesias, N. Mazzeo & E. Jeppesen, 2011. Analysis of the reproductive strategy of Jenynsia multidentata (Cyprinodontiformes, Anablepidae) with focus on sexual differences in growth, size, and abundance. Hydrobiologia 673: 245–257.CrossRefGoogle Scholar
  18. Hammer, Ø., D. A. T. Harper & P. D. Ryan 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. http://www.palaeo-electronicaorg/2001_1/past/issue1_01htm. 4(1, art. 4):9 pp.
  19. Heady, W. N. & J. W. Moore, 2012. Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia 172(1): 21–34.CrossRefPubMedGoogle Scholar
  20. Jackson, A. L., R. Inger, A. C. Parnell & S. Bearhop, 2011. Comparing isotopic niche widths among and within communities: SIBER: stable isotope bayesian ellipses in R. Journal of Animal Ecology 80: 595–602.CrossRefPubMedGoogle Scholar
  21. Jardine, T. D., 2016. A top predator forages low on species-rich tropical food chains. Freshwater Science. doi:10.1086/685858.Google Scholar
  22. Jardine, T. D., W. L. Hadwen, S. K. Hamilton, S. Hladyz, S. M. Mitrovic, K. A. Kidd, W. Y. Tsoi, M. Spears, D. P. Westhorpe, V. M. Fry, F. Sheldon & S. E. Bunn, 2014. Understanding and overcoming baseline isotopic variability in running waters. River Research and Applications 30(2): 155–165.CrossRefGoogle Scholar
  23. Jepsen, D. B. & K. O. Winemiller, 2002. Structure of tropical river food webs revealed by stable isotope ratios. Oikos 96: 46–55.CrossRefGoogle Scholar
  24. Jeppesen, E., T. Mehner, I. Winfield, K. Kangur, J. Sarvala, D. Gerdeaux, M. Rask, H. Malmquist, K. Holmgren, P. Volta, S. Romo, R. Eckmann, A. Sandström, S. Blanco, A. Kangur, H. Ragnarsson Stabo, M. Tarvainen, A.-M. Ventelä, M. Søndergaard, T. Lauridsen & M. Meerhoff, 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 1–39.CrossRefGoogle Scholar
  25. Jones, J. I. & S. Waldron, 2003. Combined stable isotope and gut contents analysis of food webs in plant dominated, shallow lakes. Freshwater Biology 48: 1396–1407.CrossRefGoogle Scholar
  26. Kruk, C., L. RodrÍGuez-Gallego, M. Meerhoff, F. Quintans, G. Lacerot, N. Mazzeo, F. Scasso, J. C. Paggi, E. T. H. M. Peeters & M. Scheffer, 2009. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshwater Biology 54: 2628–2641.CrossRefGoogle Scholar
  27. Lawton, J. H., 1999. Are there general laws in ecology? Oikos 84: 177–192.CrossRefGoogle Scholar
  28. Layman, C. A., K. O. Winemiller, D. A. Arrington & D. B. Jepsen, 2005. Body size and trophic position in a diverse tropical food web. Ecology 86: 2530–2535.CrossRefGoogle Scholar
  29. Layman, C. A., D. A. Arrington, C. G. Montaña & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48.CrossRefPubMedGoogle Scholar
  30. Lazzaro, X., M. Bouvy, R. A. Ribeiro-Filho, V. S. Oliviera, L. T. Sales, A. R. M. Vasconcelos & M. R. Mata, 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology 48: 649–668.CrossRefGoogle Scholar
  31. Lazzaro, X., G. Lacroix, B. Gauzens, J. Gignoux & S. Legendre, 2009. Predator foraging behaviour drives food-web topological structure. Journal of Animal Ecology 78: 1307–1317.CrossRefPubMedGoogle Scholar
  32. Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–417.CrossRefGoogle Scholar
  33. Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  34. Pacheco, J., C. Iglesias, M. Meerhoff, C. Fosalba, G. Goyenola, F. Teixeira-de Mello, S. García, M. Gelós & F. García-Rodríguez, 2010. Phytoplankton community structure in five subtropical shallow lakes with different trophic status (Uruguay): a morphology-based approach. Hydrobiologia 646: 187–197.CrossRefGoogle Scholar
  35. Persson, L., 1986. Temperature-induced shift in foraging ability in two fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis): implications for coexistence between poikilotherms. Journal of Animal Ecology 55(3): 829–839.CrossRefGoogle Scholar
  36. Petchey, O. L., P. T. McPhearson, T. M. Casey & P. J. Morin, 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402: 69–72.CrossRefGoogle Scholar
  37. Pimm, S. L., 1991. The Balance of Nature?: Ecological Issues in the Conservation of Species and Communities. University of Chicago Press, Chicago.Google Scholar
  38. Polis, G. A. & D. R. Strong, 1996. Food web complexity and community dynamics. American Naturalist 147: 813–846.CrossRefGoogle Scholar
  39. Post, D. M., 2002a. The long and short of food-chain length. Trends in Ecology and Evolution 17: 269–277.CrossRefGoogle Scholar
  40. Post, D. M., 2002b. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  41. Post, D. & G. Takimoto, 2007. Proximate structural mechanisms for variation in food-chain length. Oikos 116(5): 775–782.CrossRefGoogle Scholar
  42. Post, D. M., M. L. Pace & N. G. Hairston, 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.CrossRefPubMedGoogle Scholar
  43. Rosenzweig, M. L., 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  44. Takimoto, G., D. Post, D. Spiller & R. Holt, 2012. Effects of productivity, disturbance, and ecosystem size on food-chain length: insights from a metacommunity model of intraguild predation. Ecological Research 27: 481–493.CrossRefGoogle Scholar
  45. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.CrossRefGoogle Scholar
  46. Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H. H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.CrossRefGoogle Scholar
  47. Vadeboncoeur, Y., K. McCann, M. Zanden & J. Rasmussen, 2005. Effects of multi-chain omnivory on the strength of trophic control in lakes. Ecosystems 8: 682–693.CrossRefGoogle Scholar
  48. Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.CrossRefGoogle Scholar
  49. Vander Zanden, M. J. & W. W. Fetzer, 2007. Global patterns of aquatic food chain length. Oikos 116: 1378–1388.CrossRefGoogle Scholar
  50. Vander Zanden, M., Y. Vadeboncoeur & S. Chandra, 2011. Fish reliance on littoral–benthic resources and the distribution of primary production in lakes. Ecosystems 14: 894–903.CrossRefGoogle Scholar
  51. Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet 15N enrichment: a meta-analysis. Oecologia 136: 169–182.CrossRefPubMedGoogle Scholar
  52. Watson, L. C., D. J. Stewart & M. A. Teece, 2013. Trophic ecology of Arapaima in Guyana: giant omnivores in Neotropical floodplains. Neotropical Ichthyology 11: 341–349.CrossRefGoogle Scholar
  53. Woodward, G., 2009. Biodiversity, ecosystem functioning and food webs in fresh waters: assembling the jigsaw puzzle. Freshwater Biology 54: 2171–2187.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carlos Iglesias
    • 1
    • 2
  • Mariana Meerhoff
    • 1
    • 2
  • Liselotte S. Johansson
    • 2
  • Ivan González-Bergonzoni
    • 1
    • 2
    • 3
  • Néstor Mazzeo
    • 1
  • Juan Pablo Pacheco
    • 1
  • Franco Teixeira-de Mello
    • 1
  • Guillermo Goyenola
    • 1
  • Torben L. Lauridsen
    • 2
    • 4
    • 5
  • Martin Søndergaard
    • 2
    • 5
  • Thomas A. Davidson
    • 2
    • 4
  • Erik Jeppesen
    • 2
    • 4
    • 5
  1. 1.Grupo de Ecología y Rehabilitación de Sistemas Acuáticos, Departamento de Ecología Teórica y Aplicada, Centro Universitario de la Región Este-Facultad de CienciasUniversidad de la RepúblicaMaldonadoUruguay
  2. 2.Department of BioscienceAarhus UniversitySilkeborgDenmark
  3. 3.Departamento de Ecología y EvoluciónFacultad de Ciencias Universidad de la RepúblicaMontevideoUruguay
  4. 4.Arctic Research CentreAarhus UniversityAarhusDenmark
  5. 5.Sino-Danish Education and Research CentreBeijingChina

Personalised recommendations