Advertisement

Hydrobiologia

, Volume 793, Issue 1, pp 95–108 | Cite as

Macroinvertebrate community composition and diversity in ephemeral and perennial ponds on unregulated floodplain meadows in the UK

  • Matthew J. Hill
  • R. G. Death
  • K. L. Mathers
  • D. B. Ryves
  • J. C. White
  • P. J. Wood
SMALL WATER BODIES

Abstract

Ponds are common and abundant landscape features in temperate environments, particularly on floodplains where lateral connectivity with riverine systems persists. Despite their widespread occurrence and importance to regional diversity, research on the ecology and hydrology of temperate ephemeral and perennial floodplain ponds lags behind that of other shallow waterbodies. This study examines the aquatic macroinvertebrate diversity of 34 ponds (20 perennial and 14 ephemeral) on two unregulated riverine floodplain meadows in Leicestershire, UK. Perennial ponds supported nearly twice the diversity of ephemeral ponds. Despite frequent inundation of floodwater and connectivity with other floodplain waterbodies, ephemeral ponds supported distinct invertebrate communities when compared to perennial ponds. When the relative importance of physical, chemical, biological and spatial characteristics was examined, physical and chemical characteristics were found to account for more variation in community composition than biological or spatial variables. The results suggest that niche characteristics rather than neutral colonisation processes dominate the structure of invertebrate communities of floodplain ponds. The maintenance of pond networks with varying hydroperiod lengths and environmental characteristics should be encouraged as part of conservation management strategies to provide heterogeneous environmental conditions to support and enhance aquatic biodiversity at a landscape scale.

Keywords

Community composition Community heterogeneity Connectivity Dry phase duration Hydroperiod Invertebrate Species richness 

Notes

Acknowledgments

The authors gratefully acknowledge Leicestershire and Rutland Wildlife Trust that granted access to their land. Special thanks to Chris Hill for helping with the identification of pond sites. Thanks are extended to Barry Kenny, Stuart Ashby and Danielle Ashdown for their assistance in the field. MJH gratefully acknowledges the support of a Loughborough University Graduate School Studentship in the Department of Geography to undertake the research presented in this paper.

Supplementary material

10750_2016_2856_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)

References

  1. Armitage, P. D., A. Hawczak & J. H. Blackburn, 2012. Tyre track pools and puddles – anthropogenic contributors to aquatic diversity. Limnetica 42: 254–263.Google Scholar
  2. Bagella, S., S. Gascon, M. C. Caria, J. Sala, M. A. Mariani & D. Boix, 2010. Identifying key environmental factors related to plant and crustacean assemblage in Mediterranean temporary ponds. Diversity Conservation 19: 1749–1768.CrossRefGoogle Scholar
  3. Bazzanti, M., V. D. Bella & M. Seminara, 2003. Factors affecting macroinvertebrate communities in astatic ponds in Central Italy. Journal of Freshwater Ecology 18: 537–548.CrossRefGoogle Scholar
  4. Bazzanti, M., C. Coccia & M. Giuseppina Dowgiallo, 2010. Microdistribution of macroinvertebrates in a temporary pond of Central Italy: taxonomic and functional analyses. Limnologica-Ecology and Management of Inland Waters 40: 291–299.CrossRefGoogle Scholar
  5. Biggs, J., A. Corfield, D. Walker, M. Whitfield & P. Williams, 1994. New approaches to pond management. British Wildlife 5: 273–287.Google Scholar
  6. Biggs, J., G. Fox, M. Whitfield & P. Williams, 1998. A Guide to the Methods of the National Pond Survey. Pond Action, Oxford.Google Scholar
  7. Bilton, D. T., A. Foggo & D. Rundle, 2001. Size permanence and the proportion of predators in ponds. Archiv fur Hydrobiologie 151: 451–458.CrossRefGoogle Scholar
  8. Bilton, D. T., L. C. McAbendroth, P. Nicolet, A. Bedford, S. D. Rundle, A. Foggo & P. M. Ramsay, 2009. Ecology and conservation status of temporary and fluctuating ponds in two areas of southern England. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 134–146.CrossRefGoogle Scholar
  9. Boix, D., J. Kneitel, B. J. Robson, C. Duchet, L. Zuniga, J. Day, S. Gascon, J. Sala, X. D. Quintana & L. Blaustein, 2016. Invertebrates of Freshwater Temporary Ponds in Mediterranean Climates. In Batzer, D. & D. Boix (eds), Invertebrates in Freshwater Wetlands. Springer International Publishing, Basel: 141.CrossRefGoogle Scholar
  10. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  11. Bornette, G., C. Amoros & N. Lamouroux, 1998. Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater Biology 39: 267–283.CrossRefGoogle Scholar
  12. Bratton, J. H., 1990. Seasonal Pools: an overlooked invertebrate habitat. British Wildlife 2: 22–29.Google Scholar
  13. Brendonck, L., E. Michels, L. De Meester & B. Riddoch, 2002. Temporary ponds are not ‘enemy-free’. Hydrobiologia 486: 147–159.CrossRefGoogle Scholar
  14. BRIG. 2008. UK Biodiversity Action Plan Priority Habitat Descriptions. Ponds: 1–101. http://jncc.defra.gov.uk/PDF/UKBAP_PriorityHabitatDesc-Rev2010.pdf. Accessed 18 April 2016.
  15. Bronmark, C. & L. Hansson (eds), 2005. The Biology of Lakes and Ponds. Oxford University Press, Oxford.Google Scholar
  16. Buijse, A. D., H. Coops, M. Staras, L. H. Jans, G. J. Van Geest, R. E. Grifts, B. W. Ibelings, W. Oosterberg & F. C. J. M. Roozen, 2002. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology 47: 889–907.CrossRefGoogle Scholar
  17. Castella, E., O. Béguin, A. L. Besacier-Monbertrand, D. Hug Peter, N. Lamouroux, H. Mayor Siméant, D. McCrae, J. M. Olivier & A. Paillex, 2015. Realised and predicted changes in the invertebrate benthos after restoration of connectivity to the floodplain of a large river. Freshwater Biology 60: 1131–1146.CrossRefGoogle Scholar
  18. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER E-Ltd, Plymouth.Google Scholar
  19. Collinson, N. H., J. Biggs, A. Corfield, M. J. Hodson, D. Walker, M. Whitfield & P. Williams, 1995. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biological Conservation 74: 125–133.CrossRefGoogle Scholar
  20. Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.CrossRefPubMedGoogle Scholar
  21. Cottenie, K. & L. De Meester, 2003. Connectivity and Cladoceran species richness in a metacommunity of shallow lakes. Freshwater Biology 48: 823–832.CrossRefGoogle Scholar
  22. Cottenie, K., E. Michels, N. Nuytten & L. De Meester, 2003. Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84: 991–1000.CrossRefGoogle Scholar
  23. Davy-Bowker, J., 2002. A mark and recapture study of water beetles (Coleoptera: Dytiscidae) in a group of semi-permanent and temporary ponds. Aquatic Ecology 36: 435–446.CrossRefGoogle Scholar
  24. De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van De Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.CrossRefGoogle Scholar
  25. Dell, A. I., R. A. Alford & R. G. Pearson, 2014. Intermittent pool beds are cyclic habitats with distinct wet, moist and dry phases. PLoS One 9: 1–11.CrossRefGoogle Scholar
  26. Della Bella, V., M. Bazzanti & F. Chariotti, 2005. Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 583–600.CrossRefGoogle Scholar
  27. Drake, M., 2001. The importance of temporary waters for Diptera (true-flies). Freshwater Forum 17: 26–39.Google Scholar
  28. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  29. Florencio, M., C. Díaz-Paniagua, C. Gómez-Rodríguez & L. Serrano, 2014. Diversity patterns in a macroinvertebrate community of a temporary pond network. Insect Conservation and Diversity 7: 4–21.CrossRefGoogle Scholar
  30. Google Earth, 2015. https://earth.google.com [last accessed 12/05/2016].
  31. Gergel, S. E., 2002. Assessing cumulative impacts of levees and dams on floodplain ponds: a neutral-terrain model approach. Ecological Applications 12: 1740–1754.CrossRefGoogle Scholar
  32. Hassall, C., J. Hollinshead & A. Hull, 2011. Environmental correlates of plant and invertebrate species richness in ponds. Biodiversity conservation 20: 3189–3222.CrossRefGoogle Scholar
  33. Hassall, C., M. Hill, D. Gledhill & J. Biggs, 2016. The Ecology and Management of Urban Pondscapes. In Francis, R., J. D. A. Millington & M. A. Chadwick (eds), Urban Landscape Ecology: Science, Policy and Practice. Routledge, Abingdon.Google Scholar
  34. Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2014. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns processes and prospects. Freshwater Biology 60: 845–869.CrossRefGoogle Scholar
  35. Helfield, J. M., J. Engstrom, J. T. Michel, C. Nilsson & R. Jansson, 2012. Effects of river restoration on riparian diversity in secondary channels of the Pite River, Sweden. Environmental Management 49: 130–141.CrossRefPubMedGoogle Scholar
  36. Hinden, H., B. Oertli, N. Menetrey, L. Sager & J. Lachavanne, 2005. Alpine pond biodiversity: what are the related environmental variables. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 613–624.CrossRefGoogle Scholar
  37. Hurlbert, S. H., 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577–585.CrossRefGoogle Scholar
  38. Jeffries, M. J., 2015. Flood, drought and the inter-annual variation to the number and size of ponds and small wetlands in an English lowland landscape over three years of weather extremes. Hydrobiologia 768: 255–272.CrossRefGoogle Scholar
  39. JNCC. 2015. http://jncc.defra.gov.uk/page-3408. Accessed 15 July 2015.
  40. Lake, S., N. Bond & P. Reich, 2006. Floods down rivers: from damaging to replenishing forces. Advances in Ecological Research 39: 41–62.CrossRefGoogle Scholar
  41. Legendre, P. & H. J. B. Birks, 2012. From Classical to Canonical Conservation. In Birks, H. J. B., A. F. Lotter, S. Juggins & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Volume 5: Data Handling and Numerical Techniques. Springer, Dordrecht: 201–248.CrossRefGoogle Scholar
  42. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  43. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  44. Lott, D., 2001. Ground beetles and rove beetles associated with temporary ponds in England. Freshwater Forum 17: 40–53.Google Scholar
  45. Marsh, T. J., S. Parry, M. C. Kendon & J. Hannaford, 2013. The 2010–12 Drought and Subsequent Extensive Flooding. Centre for Ecology & Hydrology, Wallingford: 54 pp.Google Scholar
  46. McCabe, D. J. & N. J. Gotelli, 2000. Effects of disturbance frequency, intensity and area on assemblages of stream macroinvertebrates. Oecologia 124: 270–279.CrossRefPubMedGoogle Scholar
  47. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Debuque.Google Scholar
  48. Ng, I. S. Y., C. M. Carr & K. Cottenie, 2009. Hierarchical zooplankton metacommunities; distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619: 133–143.CrossRefGoogle Scholar
  49. Nicolet, P., 2001. Temporary ponds in the UK: a critical diversity resource for freshwater plants and animals. Freshwater Forum 17: 16–25.Google Scholar
  50. Nicolet, P., J. Biggs, G. Fox, M. J. Hodson, C. Reynolds, M. Whitfield & P. Williams, 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biological Conservation 120: 261–278.CrossRefGoogle Scholar
  51. Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the worlds large river systems. Science 308: 405–408.CrossRefPubMedGoogle Scholar
  52. Paillex, A., S. Doledec, E. Castella, S. Merigoux & D. Aldridge, 2013. Functional diversity in a large river floodplain: anticipating the response of native and alien macroinvertebrate to the restoration of hydrological connectivity. Journal of Applied Ecology 50: 97–106.CrossRefGoogle Scholar
  53. Paillex, A., E. Castella, P. S. E. Zu Ermgassen & D. C. Aldridge, 2015. Testing predictions of change in alien and native macroinvertebrate communities and their interaction after the restoration of a large river floodplain. Freshwater Biology 60: 1162–1175.CrossRefGoogle Scholar
  54. Quinlan, J. R., 1993. Combining Instance-Based and Model-Based Learning. In Proceedings of the Tenth International Conference on Machine Learning. Morgan Kaufmann, San Francisco: 236–243.Google Scholar
  55. R Development Core Team, 2013. R: A language and environment for statistical computing. R Foundation for statistical computing: Vienna, Austria.Google Scholar
  56. Reckendorfer, W., C. Baranyi, A. Funk & F. Schiemer, 2006. Floodplain restoration by reinforcing hydrological connectivity: expected effects on aquatic mollusc communities. Journal of Applied Ecology 43: 474–484.CrossRefGoogle Scholar
  57. Savage, A. A., 1989. Adults of the British Aquatic Hemiptera Heteroptera: A Key with Ecological Notes. Freshwater Biological Association Scientific Publication No. 50, Freshwater Biological Association, Cumbria.Google Scholar
  58. Shiel, R. J., J. D. Green & D. L. Nielsen, 1998. Floodplain diversity: why are there so many species? Hydrobiologia 387(388): 39–46.CrossRefGoogle Scholar
  59. Starr, S. M., J. P. Benstead & R. A. Sponseller, 2014. Spatial and temporal organization of macroinvertebrate assemblages in a lowland floodplain ecosystem. Landscape Ecology 29: 1017–1031.CrossRefGoogle Scholar
  60. Tachet, H., P. Richoux, M. Bournaud & U. Usseglio-Polatera, 2003. Invertebres d’eau douche systematique, biologie, ecologie. CNRS Editions, Paris.Google Scholar
  61. ter Braak, C. J. F. & P. Šmilaur, 2002. CANOCO Reference Manual and CanoDraw for Windows Users Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, New York.Google Scholar
  62. Tockner, K. & J. A. Stanford, 2002. Review of: riverine flood plains: present state and future trends. Environmental Conservation 29: 308–330.CrossRefGoogle Scholar
  63. Tockner, K., F. Malard & J. V. Ward, 2000. An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883.CrossRefGoogle Scholar
  64. Tockner, K., M. Puschm, D. Borchardt & M. S. Lorang, 2010. Multiple stressors in coupled river-floodplain ecosystems. Freshwater Biology 55: 135–151.CrossRefGoogle Scholar
  65. Van De Meutter, F., L. De Meester & R. Stoks, 2007. Metacommunity structure of pond macroinvertebrates: effects of dispersal mode and generation time. Ecology 88: 1687–1695.CrossRefPubMedGoogle Scholar
  66. Vanschoenwinkel, B., C. Vries, M. Seaman & L. Brendonck, 2007. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116: 1255–1266.CrossRefGoogle Scholar
  67. Ward, J. V., K. Tockner & F. Schiemer, 1999. Diversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15: 125–139.CrossRefGoogle Scholar
  68. Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.CrossRefGoogle Scholar
  69. Williams, D. D., 1996. Environmental constraints in temporary freshwaters. Journal of the North American Benthological Society 15: 634–650.CrossRefGoogle Scholar
  70. Williams, D. D., 1997. Temporary ponds and their invertebrate communities. Aquatic Conservation: Marine and Freshwater Ecosystems 7: 105–117.CrossRefGoogle Scholar
  71. Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.Google Scholar
  72. Williams, P., J. Biggs, A. Crowe, J. Murphy, P. Nicolet, A. Meatherby & M. Dunbar 2010. Countryside survey report from 2007. Technical report No 7/07 Pond Conservation and NERC/Centre for Ecology and Hydrology, Lancaster.Google Scholar
  73. Williams, P., J. Biggs, G. Fox, P. Nicolet & M. Whitfield, 2001. History, origins and importance of temporary ponds. Freshwater Forum 17: 7–15.Google Scholar
  74. Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2003. Comparative diversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341.CrossRefGoogle Scholar
  75. Williams, P., M. Whitfield & J. Biggs, 2008. How can we make new ponds biodiverse? A case study monitored over 7 years. Hydrobiolgia 597: 137–148.CrossRefGoogle Scholar
  76. Witten, I. H. & E. Frank, 2000. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco.Google Scholar
  77. Witten, I. H., E. Frank & M. A. Hall, 2011. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed. Morgan Kaufmann, Burlington.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Matthew J. Hill
    • 1
  • R. G. Death
    • 2
  • K. L. Mathers
    • 3
  • D. B. Ryves
    • 3
  • J. C. White
    • 3
  • P. J. Wood
    • 3
  1. 1.Institute of Science and the EnvironmentUniversity of WorcesterWorcesterUK
  2. 2.Institute of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
  3. 3.Department of Geography, Centre for Hydrological and Ecosystem ScienceLoughborough UniversityLoughboroughUK

Personalised recommendations