Hydrobiologia

, Volume 780, Issue 1, pp 59–69 | Cite as

Is fish able to regulate filamentous blue-green dominated phytoplankton?

  • Tiina Nõges
  • Ain Järvalt
  • Juta Haberman
  • Priit Zingel
  • Peeter Nõges
EUROPEAN LARGE LAKES IV

Abstract

Efficient zooplankton grazing is a prerequisite for establishing a cascading food web control over phytoplankton in a lake. We studied if the top-down impact of fish could reach phytoplankton in a lake where the grazing pressure of small-sized zooplankton on filamentous phytoplankton is considered weak. We analysed >30 years of data on plankton, fish catches, hydrochemistry, hydrology, and meteorology from Võrtsjärv, a large and shallow eutrophic lake in Estonia with intensive commercial fisheries. The lake’s unregulated water level has been considered the strongest factor affecting the ecosystem through modifying sediment resuspension, internal loading of nutrients, and underwater light conditions and spawning conditions for fish. We found a negative relationship between phytoplankton biomass and pikeperch biomass indicating a potential top-down cascading effect in the food web. Top-down control of phytoplankton by zooplankton was reflected in a negative relationship between phyto- and zooplankton biomasses. A decrease of the individual weight of crustacean zooplankton with increasing biomass of small fish suggested top-down control of zooplankton by planktivorous fish. In contrast, we could not demonstrate a direct linkage between piscivorous fish and small fish. The top-down food web impact of piscivores, however, was manifested at zooplankton level in a positive correlation of pikeperch biomass with the biomass of dominating cladoceran species Bosmina coregoni and the individual weight of copepods. At high biomasses of small fish, ciliate domination over metazooplankton increased and thus enhanced the strength of the microbial food web. According to our results, fishery management measures that increase small plankti- and benthivorous fish biomass have to be avoided as they have a cascading negative effect on the ecosystem health.

Keywords

Ecosystem-based fishery management Large shallow lake Food web interactions Fish Phytoplankton Zooplankton Ciliates 

Supplementary material

10750_2016_2849_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 27 kb)

References

  1. Agasild, H., P. Zingel, K. Karus, K. Kangro & T. Nõges, 2013. Does metazooplankton regulate the ciliate community in a shallow eutrophic lake? Freshwater Biology 58: 183–191.CrossRefGoogle Scholar
  2. Balushkina, E. B. & G. G. Vinberg, 1979. Зaвиcимocть мeждy мaccoй и длннoй тeлa y плaнктoнныx живoтныx. Г. Г. Bинбepг (peд), Oбщиe ocнoвы изyчeния вoдныx экocиcтeм. Лeнингpaд: 169–172.Google Scholar
  3. Foissner, W. & H. Berger, 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35: 375–482.Google Scholar
  4. Foissner, W., H. Berger & J. Schaumburg, 1999. Identification and ecology of limnetic plankton ciliates. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 3(99): 1–793.Google Scholar
  5. Grasshoff, K. E. & M. K. Kremling, 1983. Methods of seawater analysis. Verlag Chemie, Weinheim.Google Scholar
  6. Haberman, J., 1998. Zooplankton of Lake Võrtsjärv. Limnologica 28: 49–65.Google Scholar
  7. Haberman, J. & M. Haldna, 2014. Indices of zooplankton community has valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. Journal of Limnology 73(2): 61–71.CrossRefGoogle Scholar
  8. Järvalt, A., 1998. Estimation of fishing mortality and abundance of pikeperch Stizostedion lucioperca (L.) in Lake Võrtsjärv, Estonia, by Virtual Population Analysis. Limnologica 28(1): 109–113.Google Scholar
  9. Järvalt, A., A. Kangur, K. Kangur, P. Kangur & E. Pihu, 2004. Fishes and fisheries management. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn: 281–295.Google Scholar
  10. Jeppesen, E., M. Sųndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Research 47: 411–487.CrossRefGoogle Scholar
  11. Laugaste, R., J. Haberman, T. Krause & J. Salujõe, 2007. Significant changes in phyto- and zooplankton in L. Peipsi in recent years: what is the underlying reason? Proceedings of Estonian Academy of Sciences. Biology and Ecology 56: 106–123.Google Scholar
  12. Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408(409): 277–283.CrossRefGoogle Scholar
  13. Nõges, P. & T. Nõges, 2012. Võrtsjärv Lake in Estonia. In Bengtsson, L., R. W. Herschy & R. W. Fairbridge (eds), Encyclopedia of Lakes and Reservoirs. Springer, New York: 850–861.Google Scholar
  14. Nõges, P. & L. Tuvikene, 2012. Spatial and annual variability of environmental and phytoplankton indicators in Lake Võrtsjärv: implications for water quality monitoring. Estonian Journal of Ecology 61: 227–246.CrossRefGoogle Scholar
  15. Nõges, P., R. Laugaste & T. Nõges, 2004a. Phytoplankton. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopedia Publishers, Tallinn: 217–231.Google Scholar
  16. Nõges, T., J. Haberman, A. Kangur, K. Kangur, P. Kangur, H. Künnap, H. Timm, P. Zingel & P. Nõges, 2004b. Food webs in Lake Võrtsjärv. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn: 335–345.Google Scholar
  17. Nõges, P., T. Nõges & A. Laas, 2010a. Climate-related changes of phytoplankton seasonality in large shallow Lake Võrtsjärv. Estonia. Aquatic Ecosystem Health & Management 13(2): 154–163.CrossRefGoogle Scholar
  18. Nõges, P., U. Mischke, R. Laugaste & A. G. Solimini, 2010b. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646: 33–48.CrossRefGoogle Scholar
  19. Pihu, E. & A. Mäemets, 1982. The management of fisheries in Lake Võrtsjärv. Hydrobiologia 86: 207–210.CrossRefGoogle Scholar
  20. Post, J. R., 2012. Resilient recreational fisheries or prone to collapse? A decade of research on the science and management of recreational fisheries. Fisheries Management and Ecology 20(2–3): 99–110.Google Scholar
  21. Ruttner-Kolishko, A., 1977. Suggestions for biomass calculation of planktonic rotifers. Archiv für Hydrobiologie 8: 71–76.Google Scholar
  22. Schaffner, W. R., N. G. Hairston & R. W. Howarth, 1994. Feeding rates and filament clipping by crustacean zooplankton consuming cyanobacteria. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen 25(4): 2375–2381.Google Scholar
  23. Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRefPubMedGoogle Scholar
  24. Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. Proceedings of a Symposium on Water Quality and Management through Biological Control, Gainesville: 85–96.Google Scholar
  25. Studenikina, E. I. & M. M. Tserepahina, 1969. Cpeдний вec ocнoвныx зooплaнктoнa Aзoвcкoгo мopя. Гидpoбиoлoгичecкий жypнaл 5: 89–91.Google Scholar
  26. Tarvainen, M., A.-M. Ventelä, H. Helminen & J. Sarvala, 2005. Nutrient release and resuspension generated by ruffe (Gymnocephalus cernuus) and chironomids. Freshwater Biology 50: 447–458.CrossRefGoogle Scholar
  27. Tõnno, I., H. Agasild, T. Kõiv, R. Freiberg, P. Nõges & T. Nõges, 2016. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake. PloS One 11(4): e0154526.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Urrutia-Cordero, P., M. K. Ekvall & L.-A. Hansson, 2015. Response of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshwater Biology 60: 960–972.CrossRefGoogle Scholar
  29. Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplanktonmethodik. Mitteilungen Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  30. Vďačný, P. & W. Foissner, 2012. Monograph of the dileptids (Protista, Ciliophora, Rhynchostomatia). Land Oberösterreich, Biologiezentrum/Oberösterreichische Landesmuseen.Google Scholar
  31. Virro, T., 1989. The comparison of sampling methods of planktonic rotifers (Rotatoria) on the example of Lake Peipsi. Proceedings of Academy of Sciences of Estonian SSR, Biology 38: 119–122. (in Russian).Google Scholar
  32. Zingel, P., 1999. Pelagic ciliated protozoa in a shallow eutrophic lake: community structure and seasonal dynamics. Archiv für Hydrobiolgie 146: 495–511.CrossRefGoogle Scholar
  33. Zingel, P. & T. Nõges, 2010. Seasonal and annual population dynamics of ciliates in a shallow eutrophic lake. Fundamental and Applied Limnology 176: 133–143.CrossRefGoogle Scholar
  34. Zingel, P. H., K. Agasild, K. Karus, H. Kangro, I. Tammert, T. Feldmann Tõnno & T. Nõges, 2016. The influence of zooplankton enrichment on the microbial loop in a shallow, eutrophic lake. European Journal of Protistology 52: 22–35.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tiina Nõges
    • 1
  • Ain Järvalt
    • 1
  • Juta Haberman
    • 1
  • Priit Zingel
    • 1
  • Peeter Nõges
    • 1
  1. 1.Centre for Limnology, Institute of Agricultural and Environmental ResearchEstonian University of Life SciencesTartu CountyEstonia

Personalised recommendations