Advertisement

Hydrobiologia

, Volume 812, Issue 1, pp 99–114 | Cite as

Regional and local determinants of macrophyte community compositions in high-latitude lakes of Finland

  • Janne Alahuhta
  • Seppo Hellsten
  • Minna Kuoppala
  • Juha Riihimäki
PLANTS IN AQUATIC SYSTEMS

Abstract

Species distributions are structured by regional and local determinants, which operate at multiple spatial and temporal scales. The purpose of our work was to distinguish the relative roles of local variables, climate, geographical location and post glaciation condition (i.e., delineation between supra- and subaquatic lakes during the post-glacial Ancylus Lake) in explaining variation in macrophyte community composition of all taxa, helophytes and hydrophytes. In addition, we investigated how these four explanatory variable groups affected macrophyte strategy groups based on Grime’s classification. Using partial linear regression and variation partitioning, we found that macrophyte communities are primarily filtered by local determinants together with regional characteristics at the studied spatial scale. We further evidenced that post glaciation condition indirectly influenced on local water quality variables, which in turn directly contributed to the macrophyte communities. We thus suggest that regional determinants interact with local-scale abiotic factors in explaining macrophyte community patterns and examining only regional or local factors is not sufficient for understanding how aquatic macrophyte communities are structured locally and regionally.

Keywords

Ancylus Lake Aquatic plants Finland Glaciation Grime’s plant strategy Macrophytes Species traits Supra-aquatic lakes 

Notes

Acknowledgments

We are highly thankful for two reviewers for their fair and constructive comments, which clearly improved our work. We also thank Joseph Bailey for helping with the structural equation modelling. The project was partly supported by Biological Monitoring of Finnish Freshwaters under the diffuse loading project (XPR3304) financed by the Ministry of Agriculture and Forestry and partly by the national surveillance monitoring programmes of lakes. We thank the numerous field teams who participated in the field work. Seppo Hellsten was supported by the EU-funded MARS project (7th EU Framework Programme, Theme 6., Contract No.: 603378). Language of the manuscript was checked by Aaron Bergdahl.

Supplementary material

10750_2016_2843_MOESM1_ESM.docx (17.4 mb)
Supplementary material 1 (DOCX 17811 kb)

References

  1. Alahuhta, J., K.-M. Vuori & M. Luoto, 2011. Land use, geomorphology and climate as environmental determinants of emergent aquatic macrophytes in boreal catchments. Boreal Environment Research 16: 185–202.Google Scholar
  2. Alahuhta, J., A. Kanninen & K.-M. Vuori, 2012. Response of macrophyte communities and status metrics to natural gradients and land use in boreal lakes. Aquatic Botany 103: 106–114.CrossRefGoogle Scholar
  3. Alahuhta, J. & J. Heino, 2013. Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. Journal of Biogeography 40: 1572–1582.CrossRefGoogle Scholar
  4. Alahuhta, J., A. Kanninen, S. Hellsten, K.-M. Vuori, M. Kuoppala & H. Hämäläinen, 2013. Environmental and spatial correlates of community composition, richness and status of boreal lake macrophytes. Ecological Indicators 32: 172–181.CrossRefGoogle Scholar
  5. Alahuhta, J., A. Kanninen, S. Hellsten, K.-M. Vuori, M. Kuoppala & H. Hämäläinen, 2014. Variable response of functional macrophyte groups to lake characteristics, land use and space: implications for bioassessment. Hydrobiologia 737: 201–214.CrossRefGoogle Scholar
  6. Alahuhta, J., 2015. Geographic patterns of lake macrophyte communities and species richness at regional scale. Journal of Vegetation Science 26: 564–575.CrossRefGoogle Scholar
  7. Alahuhta, J., J. Rääpysjärvi, S. Hellsten, M. Kuoppala & J. Aroviita, 2015. Species sorting drives variation of boreal lake and river macrophyte communities. Community Ecology 16: 76–85.CrossRefGoogle Scholar
  8. Alahuhta, J., J. Halmetoja, H. Tukiainen & J. Hjort, 2016. Importance of spatial scale in structuring emergent lake vegetation across environmental gradients and scales: GIS-based approach. Ecological Indicators 60: 1164–1172.CrossRefGoogle Scholar
  9. Barrat-Segretain, M. H., 1996. Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetatio 123: 13–37.CrossRefGoogle Scholar
  10. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecography 89: 2623–2632.Google Scholar
  11. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  12. Borcard, D., F. Gillet & P. Legendre, 2011. Numerical ecology with R. Springer, NewYork, NY.CrossRefGoogle Scholar
  13. Borman, S. C., S. M. Galatowitsch & R. M. Newman, 2009. The effects of species immigrations and changing conditions on isoetid communities. Aquatic Botany 91: 143–150.CrossRefGoogle Scholar
  14. Capers, R. S., R. Selsky & G. J. Bugbee, 2010. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwater Biology 55: 952–966.CrossRefGoogle Scholar
  15. Claussen, P., B. A. Nolet, A. D. Fox & M. Klaassen, 2002. Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe: a critical review of possibilities and limitations. Acta Oecologia 23: 191–203.CrossRefGoogle Scholar
  16. De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.CrossRefPubMedGoogle Scholar
  17. Dieffenbacher-Krall, A. C. & G. L. Jacobson, 2001. Post-glacial changes in the geographic ranges of certain aquatic vascular plants in North America. Proceeding of the Royal Irish Academy B 101: 79–84.Google Scholar
  18. Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.CrossRefPubMedGoogle Scholar
  19. Eronen, M., 2005. Land Uplift: Virgin Land from the Sea. In Seppälä, M. (ed.), The physical geography of Fennoscandia. Oxford University Press, Oxford: 17–34.Google Scholar
  20. Epskamp, S., 2015. semPlot: unified visualizations of structural equation models. Structural Equation Modeling: A Multidisciplinary Journal. doi: 10.1080/10705511.2014.937847.Google Scholar
  21. Grace, J. B., 2006. Structural equation modeling and natural systems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  22. Grace, J. B., D. R. Schoolmaster Jr., G. R. Guntenspergen, A. M. Little, B. R. Mitchell, K. M. Miller & E. W. Schweiger, 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3: 1–44.CrossRefGoogle Scholar
  23. Grime, J. P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalists 111: 1169–1194.CrossRefGoogle Scholar
  24. Grime, J. P., J. G. Hodgson & R. Hunt, 1988. Comparative plant ecology. A functional approach to common british species. Springer, Berlin.Google Scholar
  25. Heino, J. & H. Toivonen, 2008. Aquatic plant biodiversity at high latitudes: patterns of richness and rarity in Finnish freshwater macrophytes. Boreal Environment Research 13: 1–14.Google Scholar
  26. Heino, J., J. Soininen, J. Alahuhta, J. Lappalainen & R. Virtanen, 2015. A comparative analysis of metacommunity types in the freshwater realm. Ecology and Evolution 5: 1525–1537.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Heino, J. & J. Alahuhta, 2015. Elements of regional beetle faunas: faunal variation and compositional breakpoints along climate, land cover and geographical gradients. Journal of Animal Ecology 84: 427–441.CrossRefPubMedGoogle Scholar
  28. Hellsten, S., 2001. Effects of lake water level regulation on aquatic macrophyte stands in northern Finland and options to predict these impacts under varying conditions. Acta Botanica Fennica 171: 1–47.Google Scholar
  29. Jalas, J., 1958. Suuri Kasvikirja I. Otava, Keuruu.Google Scholar
  30. Jalas, J., 1965. Suuri Kasvikirja II. Otava, Keuruu.Google Scholar
  31. Jalas, J., 1980. Suuri Kasvikirja III. Otava, Keuruu.Google Scholar
  32. Kanninen, A., V.-M. Vallinkoski, L. Leka, T. J. Marjomäki, S. Hellsten & H. Hämäläinen, 2013a. A comparison of two methods for surveying aquatic macrophyte communities in boreal lakes: implications for bioassessment. Aquatic Botany 104: 88–103.CrossRefGoogle Scholar
  33. Kanninen, A., S. Hellsten & H. Hämäläinen, 2013b. Comparing stressor-specific indices and general measures of taxonomic composition for assessing the status of boreal lacustrine macrophyte communities. Ecological Indicators 27: 29–43.CrossRefGoogle Scholar
  34. Koch, P. L. & A. D. Barnosky, 2006. Late quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution and Systematics 37: 215–250.CrossRefGoogle Scholar
  35. Lacoul, P. & B. Freedman, 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14: 89–136.CrossRefGoogle Scholar
  36. Lampinen, R., T. Lahti & M. Heikkinen, 2015. Plant Atlas of Finland 2014. University of Helsinki, The Finnish Museum of Natural History, Botanical Museum, Helsinki.Google Scholar
  37. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefPubMedGoogle Scholar
  38. Lind, L., C. Nilsson, L. E. Polvi & C. Weber, 2014. The role of ice dynamics in shaping vegetation in flowing waters. Biological Reviews 89: 791–804.CrossRefPubMedGoogle Scholar
  39. Madsen, T. V., S. C. Maberly & G. Bowes, 1996. Photosynthetic acclimation of submersed angiosperms to CO2 and HCO3 . Aquatic Botany 53: 15–30.CrossRefGoogle Scholar
  40. McCann, M. J., 2015. Local and regional determinants of an uncommon functional group in freshwater lakes and ponds. PLoS One 10: e0131980.CrossRefPubMedPubMedCentralGoogle Scholar
  41. McGill, B. J., 2010. Matters of scale. Science 328: 575–576.CrossRefPubMedGoogle Scholar
  42. Murphy, K. J., B. Rørslett & I. Springuel, 1990. Strategy analysis of submerged lake macrophyte communities: an international example. Aquatic Botany 36: 303–323.CrossRefGoogle Scholar
  43. Ojala, A. E. K., J.-P. Palmu, A. Åberg, S. Åberg & H. Virkki, 2013. Development of an ancient shoreline database to reconstruct the Littorina Sea maximum extension and the highest shoreline of the Baltic Sea basin in Finland. Bulletin of the Geological Society of Finland 85: 126–144.CrossRefGoogle Scholar
  44. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2012. Vegan: community ecology package. R package version 2.0-3 [available at: http://CRAN.R-project.org/package=vegan].
  45. Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.CrossRefPubMedGoogle Scholar
  46. Pirinen, P., H. Simola, J. Aalto, J. P. Kaukoranta, P. Karlsson & R. Ruuhela, 2012. Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute Reports 25, Helsinki.Google Scholar
  47. Ricklefs, R. E., 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7: 1–15.CrossRefGoogle Scholar
  48. Rosseel, Y., 2012. lavaan: an R package for structural equation modeling. Journal of Statistical Software 48: 1–36.CrossRefGoogle Scholar
  49. Rørslett, B., 1989. An integrated approach to hydropower impact assessment. II. Submerged macrophytes in some Norwegian hydro-electric lakes. Hydrobiologia 175: 65–82.CrossRefGoogle Scholar
  50. Rørslett, B., 1991. Principal determinants of aquatic macrophyte species richness in northern European lakes. Aquatic Botany 39: 173–193.CrossRefGoogle Scholar
  51. Saarnel, J. M., B. Beltman, A. Buijze, R. Groen & M. B. Soons, 2014. The role of wind in the dispersal of floating seeds in slow-flowing or stagnant water bodies. Journal of Vegetation Science 25: 262–274.CrossRefGoogle Scholar
  52. Sawada, M., A. E. Viau & K. Gajewski, 2003. The biogeography of aquatic macrophytes in North America since the last glacial maximum. Journal of Biogeography 30: 999–1017.CrossRefGoogle Scholar
  53. Soininen, J., 2014. A quantitative analysis of species sorting across organisms and ecosystems. Ecology 95: 3284–3292.CrossRefGoogle Scholar
  54. Soons, M. B., A.-L. Brochet, R. Kleyheeg & A. J. Green, 2015. Seed dispersal by dabbling ducks: an overlooked dispersal pathway for a broad spectrum of plant species. Journal of Ecology 104: 443–455.CrossRefGoogle Scholar
  55. Svenning, J.-C., 2003. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters 6: 646–653.CrossRefGoogle Scholar
  56. Svenning, J.-C. & F. Skov, 2003. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecology Letters 10: 453–460.CrossRefGoogle Scholar
  57. Svenning, J.-C., M. C. Fitzpatrick, S. Normand, C. H. Graham, P. B. Pearman, L. R. Iverson & F. Skov, 2010. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe. Ecography 33: 1070–1080.CrossRefGoogle Scholar
  58. Tikkanen, M. & J. Oksanen, 2002. Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland. Fennia 180(1–2): 9–20.Google Scholar
  59. Toivonen, H. & P. Huttunen, 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquatic Botany 51: 197–221.CrossRefGoogle Scholar
  60. Vestergaard, O. & K. Sand-Jensen, 2000. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Canadian Journal of Fisheries and Aquatic Sciences 57: 2022–2031.CrossRefGoogle Scholar
  61. Viana, D. S., L. Santamaría, K. Schwenk, M. Manca, A. Hobæk, M. Mjelde, C. D. Preston, R. J. Gornall, J. M. Croft, R. A. King, A. J. Green & J. Figuerola, 2014. Environment and biogeography drive aquatic plant and cladoceran species richness across Europe. Freshwater Biology 59: 2096–2106.CrossRefGoogle Scholar
  62. Väliranta, M., 2006. Long-term changes in aquatic plant species composition in North-eastern European Russia and Finnish Lapland, as evidenced by plant macrofossil analysis. Aquatic Botany 85: 224–232.CrossRefGoogle Scholar
  63. Välinranta, M., J. Weckström, S. Siitonen, H. Seppä, J. Alkio, S. Juutinen & E.-S. Tuittila, 2011. Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland. Journal of Paleolimnology 45: 339–352.CrossRefGoogle Scholar
  64. Whittaker, R. J., K. J. Willis & R. Field, 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28: 453–470.CrossRefGoogle Scholar
  65. Willis, K. J. & R. J. Whittaker, 2002. Species diversity: scale matters. Science 295: 1245–1248.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Janne Alahuhta
    • 1
  • Seppo Hellsten
    • 2
  • Minna Kuoppala
    • 2
  • Juha Riihimäki
    • 2
  1. 1.Department of GeographyUniversity of OuluOuluFinland
  2. 2.Freshwater CentreFinnish Environment InstituteOuluFinland

Personalised recommendations