, Volume 781, Issue 1, pp 109–125 | Cite as

Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain

  • Juliana Déo DiasEmail author
  • Nadson Ressyé Simões
  • Mariana Meerhoff
  • Fábio Amodêo Lansac-Tôha
  • Luiz Felipe Machado Velho
  • Cláudia Costa Bonecker
Primary Research Paper


The maintenance of biodiversity in dynamic landscapes can be explained through the unifying concept of the metacommunity, an ecological system with a changing structure that arises from both the biotic features of its component species and from changing temporal processes. We evaluated the relative importance of environmental factors and spatial factors on the structure of metacommunities of zooplankton in a Neotropical floodplain system, in relation to hydrological dynamics and potential connections among lakes. Zooplankton was sampled from 16 to 22 shallow lakes during droughts and floods in two hydrologically contrasting years. Copepods appeared to be more limited by their dispersal potential, while testate amoebae and rotifers seemed to be controlled mostly by environmental variables. These findings stress the importance of the species sorting metacommunity paradigm for groups with the smallest propagules and adult body sizes. The importance of environmental factors rather than spatial factors was apparent during floods, likely due to the facilitation of animal dispersal by floods. Our results demonstrate that the importance of these factors depends on both the functional traits of major zooplankton groups and the hydrological dynamics of the region.


Body size Dispersal Flood dynamics Spatial heterogeneity Variance partitioning 



The authors thank the Nupélia and the Graduate Program in Continental Aquatic Environments for logistical support, and PROEX/Capes. The PIAP–PELD LTER site provided financial support, and CNPq provided doctoral, post-doctoral, and Research Productivity scholarships. MM was supported by SNI-ANII and the L’Oréal-UNESCO Women in Science national award (Uruguay). Ciro Y. Joko (Centro de Ensino Unificado do Distrito Federal, Brazil) kindly furnished the drawing of the testate amoebae, rotifers, cladocerans, and copepods used in the conceptual model. We would like to thank the Ichthyology Lab/Nupélia for providing the fish database, particularly Professor Angelo A. Agostinho. We also thank Luc De Meester, Angelo A. Agostinho, Sidinei M. Thomaz, Luiz C. Gomes, and the anonymous reviewers for insightful comments that greatly improved the manuscript.

Supplementary material

10750_2016_2827_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)


  1. Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004a. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology & Hydrobiology 4: 255–256.Google Scholar
  2. Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004b. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.CrossRefGoogle Scholar
  3. Algarte, V. M., L. Rodrigues, V. L. Landeiro, T. Siqueira & L. M. Bini, 2014. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722: 279–290.CrossRefGoogle Scholar
  4. Allen, C. R., A. S. Garmestani, T. D. Havlicek, P. A. Marquet, G. D. Peterson, C. Restrepo, C. A. Stow & B. E. Weeks, 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters 9: 630–643.CrossRefPubMedGoogle Scholar
  5. Baas Becking, L. G. M., 1934. Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague.Google Scholar
  6. Baranyi, C., T. Hein, C. Holarek, S. Keckeis & F. Schiemer, 2002. Zooplankton biomass community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology 47: 473–482.CrossRefGoogle Scholar
  7. Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.CrossRefPubMedGoogle Scholar
  8. Bles, E. J., 1929. Arcella. A study in cell physiology. The Quarterly Journal of Microscopical Science 72: 527–648.Google Scholar
  9. Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.CrossRefGoogle Scholar
  10. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  11. Borcard, D., F. Gillert & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.CrossRefGoogle Scholar
  12. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  13. Brando, P. M., M. T. Coe, R. DeFries & A. A. Azevedo, 2013. Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Philosophical Transactions of the Royal Society B 368: 20120152.CrossRefGoogle Scholar
  14. Cáceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.CrossRefGoogle Scholar
  15. Carmouze, J. P., 1994. O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. Edgard Blucher, São Paulo.Google Scholar
  16. Chick, J., A. Levchuk, K. Medley & J. H. Havel, 2010. Underestimation of rotifer abundance a much greater problem than previously appreciated. Limnology and Oceanography: Methods 8: 79–87.CrossRefGoogle Scholar
  17. Cohen, G. M. & J. B. Shurin, 2003. Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103: 603–617.CrossRefGoogle Scholar
  18. Cottenie, K. & L. De Meester, 2003. Connectivity and cladoceran species richness in a metacommunity of shallow lakes. Freshwater Biology 48: 823–832.CrossRefGoogle Scholar
  19. Cottenie, K., E. Michels, N. Nuytten & L. De Meester, 2003. Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84: 991–1000.CrossRefGoogle Scholar
  20. De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.CrossRefPubMedGoogle Scholar
  21. Deflandre, G., 1928. Le genre Arcella Ehrenberg. Archiv für Protistenkunde 64: 152–287.Google Scholar
  22. Deflandre, G., 1929. Le genre Centropyxis Stein. Archiv für Protistenkunde 67: 322–375.Google Scholar
  23. Dias, J. D., C. C. Bonecker & M. R. Miracle, 2014. The rotifer community and its functional role in lakes of a Neotropical floodplain. International Review of Hydrobiology 99: 72–83.CrossRefGoogle Scholar
  24. Dudgeon, D., 2003. The contribution of scientific information to the conservation and management of freshwater biodiversity in tropical Asia. Hydrobiologia 500: 295–314.CrossRefGoogle Scholar
  25. Elmoor-Loureiro, M. A. L., 1997. Manual de identificação de cladóceros límnicos do Brasil. Editora Universa, Brasília.Google Scholar
  26. Fernandes, A. P. C., L. S. M. Braghin, J. Nedli, F. Palazzo, F. A. Lansac-Tôha & C. C. Bonecker, 2012. Passive zooplankton community in different environments of a Neotropical floodplain. Acta Scientiarum Biological Sciences 34: 413–418.CrossRefGoogle Scholar
  27. Fernandes, I. M., R. Henriques-Silva, J. Penha, J. Zuanon & P. R. Peres-Neto, 2014. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37: 464–475.Google Scholar
  28. Fontaneto, D., 2011. Biogeography of Microscopic Organisms. Is Everything Small Everywhere?. The University of Chicago Press, Chicago.CrossRefGoogle Scholar
  29. Frisch, D., K. Cottenie, A. Badosa & A. Green, 2012. Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS One 7: 1–10.Google Scholar
  30. Gauthier-Lièvre, L. & R. Thomas, 1958. Le genre Difflugia, Pentagonia, Maghrebia et Hoogenraadia (Rhizopodes Testacès) en Afrique. Archiv für Protistenkunde 103: 1–370.Google Scholar
  31. Gilpin, M. E. & I. A. Hanski, 1991. Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, London.Google Scholar
  32. Giné, M. F., H. Bergamin, E. A. Zagatto & B. F. Reis, 1980. Simultaneous determination of nitrate and nitrite by flow injection analysis. Analytica Chimica Acta 114: 191–197.CrossRefGoogle Scholar
  33. Golterman, H. L., R. S. Clymo & M. A. M. Ohstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters. Blackwell, Oxford.Google Scholar
  34. Gonzalez, A., 2009. Metacommunities: Spatial Community Ecology. Wiley, Chichester.Google Scholar
  35. Górski, K., J. J. De Leeuw, H. V. Winter, D. Vekhov, A. E. Minin, A. D. Buijse & L. A. J. Nagelkerke, 2011. Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature and habitat complexity. Freshwater Biology 56: 2210–2225.CrossRefGoogle Scholar
  36. Hájek, M., J. Rolecek, K. Cottenie, K. Kintrová, M. Horsák, A. Poulícková, P. Hájková, M. Fránková & D. Díte, 2011. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography 38: 1683–1693.CrossRefGoogle Scholar
  37. Havens, K. E., J. R. Beaver, E. E. Manis & T. L. East, 2015. Inter-lake comparisons indicate that fish predation, rather than high temperature, is the major driver of summer decline in Daphnia and other changes among cladoceran zooplankton in subtropical Florida lakes. Hydrobiologia 750: 57–67.CrossRefGoogle Scholar
  38. Heino, J., 2013. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biological Reviews 88: 166–178.CrossRefPubMedGoogle Scholar
  39. Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.CrossRefGoogle Scholar
  40. Hendrickx, F., J.-P. Maelfait, K. Desender, S. Aviron, D. Bailey, T. Diekotter, L. Lens, J. Liira, O. Schweiger, M. Speelmans, V. Vandomme & R. Bugter, 2009. Pervasive effects of dispersal limitation on within- and among community species richness in agricultural landscapes. Global Ecology and Biogeography 18: 607–616.CrossRefGoogle Scholar
  41. Holyoak, M., M. A. Leibold & R. D. Holt, 2005. Metacommunities: Spatial Dynamics and Ecological Communities. The University of Chicago Press, Chicago.Google Scholar
  42. Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S. L. Amsinck, J. C. Paggi, S. José de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.CrossRefGoogle Scholar
  43. Jenkins, K. M. & A. J. Boulton, 2003. Connectivity in a dryland river: short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology 84: 2708–2723.CrossRefGoogle Scholar
  44. José De Paggi, S. B. & J. C. Paggi, 2008. Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. International Review of Hydrobiology 93: 659–678.CrossRefGoogle Scholar
  45. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  46. Koroleff, K. J. H., 1976. Determination of ammonia. In Grasshoff, E. & E. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, Weinheim: 117–181.Google Scholar
  47. Koste, W., 1978. Rotatoria die Rädertiere Mitteleuropas begründet von Max Voight. Monogononta. Gebrüder Borntraeger, Berlin.Google Scholar
  48. Landeiro, V. L., W. E. Magnusson, A. S. Melo, H. V. Espírito-Santo & L. M. Bini, 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshwater Biology 56: 1184–1192.CrossRefGoogle Scholar
  49. Lansac-Tôha, F. A., C. C. Bonecker, L. F. M. Velho, N. R. Simões, J. D. Dias, G. M. Alves & E. M. Takahashi, 2009. Biodiversity of zooplankton communities in the Upper Paraná River floodplain: interannual variation from long-term studies. Brazilian Journal of Biology 69: 539–549.CrossRefGoogle Scholar
  50. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.Google Scholar
  51. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  52. Leibold, M. A., 2011. The metacommunity concept and its theoretical underpinnings. In Scheiner, S. M. & M. R. Willig (eds), The Theory of Ecology. University Chicago Press, London: 163–183.Google Scholar
  53. Leibold, M. A. & J. Norberg, 2004. Biodiversity in metacommunities: plankton as complex adaptive systems? Limnology and Oceanography 49: 1278–1289.CrossRefGoogle Scholar
  54. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  55. Logue, J. B., N. Mouquet, H. Peter & H. Hillebrand, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.CrossRefPubMedGoogle Scholar
  56. Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association 36: 1–120.Google Scholar
  57. Matsumura-Tundisi, T., 1986. Latitudinal distribution of Calanoida copepods in freshwater aquatic systems of Brazil. Brazilian Journal of Biology 46: 527–553.Google Scholar
  58. Michels, E., K. Cottenie, L. Neys & L. De Meester, 2001. Zooplankton on the move: first results on the quantification of dispersal of zooplankton in a set of interconnected ponds. Hydrobiologia 442: 117–126.CrossRefGoogle Scholar
  59. Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Current State and Trends. Island Press, Washington.Google Scholar
  60. Neiff, J. J., 1990. Ideas para la interpretación ecológica del Paraná. Interciencia 15: 424–441.Google Scholar
  61. Neiff, J. J., 1995. Large rivers of South America: toward the new approach. Verhandlungen des Internationalen Verein Limnologie 26: 167–180.Google Scholar
  62. Ng, I. S. Y., C. M. Carr & K. Cottenie, 2009. Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619: 133–143.CrossRefGoogle Scholar
  63. Ning, N. S. P. & D. L. Nielsen, 2011. Community structure and composition of microfaunal egg bank assemblages in riverine and floodplain sediments. Hydrobiologia 661: 211–221.CrossRefGoogle Scholar
  64. O’Malley, M. A., 2007. The nineteenth century roots of ‘everything is everywhere’. Nature Reviews 5: 647–651.PubMedGoogle Scholar
  65. Padial, A. A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9: e111227.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Peres-Neto, P. R., L. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.CrossRefPubMedGoogle Scholar
  67. Petsch, D. K., G. D. Pinha, J. D. Dias & A. M. Takeda, 2015. Temporal nestedness in Chironomidae and the importance of environmental and spatial factors in species rarity. Hydrobiologia 745: 181–193.CrossRefGoogle Scholar
  68. Reid, J. W., 1985. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boletim de Zoologia 9: 17–143.Google Scholar
  69. Core Team, R., 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  70. Schönborn, W., 1962. Über planktismus und ziklomorphose bei Difflugia limnetica (Levander) Pénard. Limnologica 1: 21–34.Google Scholar
  71. Segers, H., 1995. Rotifera: the Lecanidae (Monogonta). Guides to the identification of the micro invertebrates of the continental water of the world. SPB Academic, The Hague.Google Scholar
  72. Simões, N. R., F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2012. Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. Revista de Biología Tropical 60: 1819–1836.CrossRefPubMedGoogle Scholar
  73. Simões, N. R., J. D. Dias, C. M. Leal, L. S. M. Braghin, F. A. Lansac-Tôha & C. C. Bonecker, 2013. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a Neotropical floodplain. Aquatic Sciences 75: 607–617.CrossRefGoogle Scholar
  74. Soininen, J., M. Kokocinski, S. Estlander, J. Kotanen & J. Heino, 2007. Neutrality, niches, and determinants of plankton metacommunity structure across boreal wetland ponds. Ecoscience 14: 146–154.CrossRefGoogle Scholar
  75. Suzuki, H. I., A. A. Agostinho, D. Bailly, M. F. Gimenes, H. F. Júlio-Junior & L. C. Gomes, 2009. Inter-annual variations in the abundance of young-of-the-year of migratory fishes in the Upper Paraná River floodplain: relations with hydrographic attributes. Brazilian Journal of Biology 69: 649–660.CrossRefGoogle Scholar
  76. Symons, C. C. & S. E. Arnott, 2013. Regional zooplankton dispersal provides spatial insurance for ecosystem function. Global Change Biology 19: 1610–1619.CrossRefPubMedGoogle Scholar
  77. Teixeira, C., J. G. Tundisi & M. B. Kutner, 1965. Plankton studies in a mangrove: the standing-stock and some ecological factors. Boletim do Instituto Oceanográfico 24: 23–41.Google Scholar
  78. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.CrossRefGoogle Scholar
  79. Vanormelingen, P., K. Cottenie, E. Michels, K. Muylaert, W. Vyverman & L. De Meester, 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwater Biology 53: 2170–2183.Google Scholar
  80. Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008a. Any way the wind blows – frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.CrossRefGoogle Scholar
  81. Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008b. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31: 567–577.CrossRefGoogle Scholar
  82. Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2009. Wind mediated dispersal of freshwater invertebrates in a rock pool metacommunity: differences in dispersal capacities and modes. Hydrobiologia 635: 363–372.CrossRefGoogle Scholar
  83. Vanschoenwinkel, B., A. Waterkeyn, M. Jocqué, L. Boven, M. Seaman & L. Brendonck, 2010. Species sorting in space and time – the impact of disturbance regime on community assembly in a temporary pool metacommunity. Journal of the North American Benthological Society 29: 1267–1278.CrossRefGoogle Scholar
  84. Winegardner, A. K., B. K. Jones, I. S. Y. Ng, T. Siqueira & K. Cottenie, 2012. The terminology of metacommunity ecology. Trends in Ecology & Evolution 27: 253–254.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Juliana Déo Dias
    • 1
    Email author
  • Nadson Ressyé Simões
    • 2
  • Mariana Meerhoff
    • 3
  • Fábio Amodêo Lansac-Tôha
    • 1
  • Luiz Felipe Machado Velho
    • 1
  • Cláudia Costa Bonecker
    • 1
  1. 1.Programa de Pós Graduação em Ecologia de Ambientes Aquáticos Continentais, Núcleo de Pesquisa em Limnologia, Ictiologia e Aquicultura (Nupélia)Universidade Estadual de MaringáMaringáBrazil
  2. 2.Universidade Federal do Sul da BahiaPorto SeguroBrazil
  3. 3.Grupo de Ecología y Rehabilitación de Sistemas Acuáticos, Departamento de Ecología Teórica y Aplicada, Centro Universitario de la Región Este-Facultad de CienciasUniversidad de la RepúblicaMaldonadoUruguay

Personalised recommendations