Advertisement

Hydrobiologia

, Volume 779, Issue 1, pp 147–159 | Cite as

Combined effects of nutrients and trace metals on chironomid composition and morphology in a heavily polluted lake in central China since the early 20th century

  • Yanmin Cao
  • Enlou ZhangEmail author
  • Hongqu TangEmail author
  • Peter Langdon
  • Dongliang Ning
  • Wenxiu Zheng
Primary Research Paper

Abstract

Eutrophication and trace metal pollution seriously threaten the health of lake ecosystems; however, little is known about the response of zoobenthos to their combined impacts. In order to detect their effects on the biotic community of a lake, subfossil chironomids were analyzed in a sediment core from Sanliqi Lake, a hypereutrophic and severely metal-polluted lake located in the middle reaches of the Yangtze River in central China. The sediment core provides a record of environmental changes since the 1930s. Increases in pollutant concentrations began before the 1990s, and increases in total P and Pb began from the 1950s. Significant increases in nutrient and metal concentrations in the 1990s document the acceleration of eutrophication and metals pollution. As a consequence, macrophyte-related chironomid taxa (e.g., Cricotopus sylvestris-type and Dicrotendipes sp.) which dominated the subfossil assemblages prior to the 1990s were replaced by pollution-tolerant species (i.e., Tanypus chinensis-type and Procladius choreus-type) thereafter. Chironomid diversity gradually decreased from the 1950s with an abrupt change occurring in 1995. Multivariate statistical analyses reveal that subfossil chironomid assemblages are significantly correlated with total N, Pb, and Cd, highlighting the combined impact of nutrients and trace metals on the chironomid communities. In addition, the relative abundance of Procladius choreus-type with mouthpart deformities increased over time and is significantly positively correlated with trace metals and nutrients. Nevertheless, further laboratory studies to assess the linkage between sediment contamination and mouthpart deformities are needed in order to enhance the utility of the latter as an indicator of environmental health.

Keywords

Morphological deformity Chironomid assemblages Eutrophication Trace metal Yangtze floodplain 

Abbreviations

Ab

Ablabesmyia sp.

Ce

Corynoneura edwardsi-type

Cs

Cricotopus sylvestris-type

Dn

Dicrotendipes nervosus-type

Me

Microchironomus tener-type

Ma

Microchironomus tabarui-type

Pa

Paratanytarsus undiff

Pp

Paratanytarsus penicillatus-type

Pn

Polypedilum nubeculosum-type

Pr

Procladius choreus-type

Tp

Tanypus chinensis-type

Tt

Tanytarsus undiff

Tm

Tanytarsus mendax-type

Ta

Tanytarsus pallidicornis-type

Notes

Acknowledgments

We thank Dr. Xu Chen from China University of Geosciences for providing sediment samples and suggestions during the preparation of the manuscript. We also thank Dr. Jan Bloemendal for improving the English text and two anonymous reviewers for their valuable comments. This study was supported by the National Natural Science Foundation of China (Grant no. 41402307, 41530753, 31100389), the National Fundamental Research Project for Science and Technology of China (Grant no. 2014FY110400), and the Fundamental Research Funds for the Central Universities (Grant CZQ14019).

References

  1. Appleby, P. G., 2001. Chronostratigraphic techniques in recent sediments. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Vol. 1., Basin Analysis, Coring, and Chronological Techniques Kluwer Academic Publishers, Dordrecht: 171–203.CrossRefGoogle Scholar
  2. Arambourou, H., E. Gismondi, P. Branchu & J. N. Beisel, 2013. Biochemical and morphological responses in Chironomus riparius (Diptera, Chironomidae) larvae exposed to lead-spiked sediment. Environmental Toxicology and Chemistry 32(11): 2558–2564.PubMedGoogle Scholar
  3. Berg, C. O., 1949. Limnological role of insects to plants of the genus Potamogeton. Transactions of American Microscopical Society 68(4): 279–291.CrossRefGoogle Scholar
  4. Berg, C. O., 1950. Biology of certain Chironomidae reared from Potamogeton. Ecological Monographs 20: 83–101.CrossRefGoogle Scholar
  5. Binning, K. & D. Baird, 2001. Survey of heavy metals in the sediments of the Swartkops River Estuary, Port Elizabeth South Africa. Water SA 27: 461–466.CrossRefGoogle Scholar
  6. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modeling of Quaternary Science Data (Technical Guide 5). Quaternary Research Association, Cambridge: 161–254.Google Scholar
  7. Brodersen, K. F., B. V. Odgaard, O. Vestergaard & N. J. Anderson, 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Sobygaard, Denmark: chironomid-macrophyte co-occurrence. Freshwater Biology 46: 253–267.CrossRefGoogle Scholar
  8. Brooks, S. J., V. Udachin & B. J. Williamson, 2005. Impact of copper smelting on lakes in the southern Ural Mountains, Russia, inferred from chironomids. Journal of Paleolimnology 33: 229–241.CrossRefGoogle Scholar
  9. Brooks, S. J., P. Langdon & O. Heiri, 2007. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10: 1–276.Google Scholar
  10. Campbell, P. G., L. D. Kraemer, A. Giguère, L. Hare & A. Hontela, 2008. Subcellular distribution of cadmium and nickel in chronically exposed wild fish: inferences regarding metal detoxification strategies and implications for setting water quality guidelines for dissolved metals. Human and Ecological Risk Assessment 14: 290–316.CrossRefGoogle Scholar
  11. Carpenter, S. R., D. Ludwig & W. A. Brock, 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecological Applications 9: 751–771.CrossRefGoogle Scholar
  12. Cattaneo, A., Y. Couillard & S. Wunsam, 2008. Sedimentary diatoms along a temporal and spatial gradient of metal contamination. Journal of Paleolimnology 40: 115–127.CrossRefGoogle Scholar
  13. Chen, X., X. Mao, Y. Cao & X. Yang, 2013. Use of siliceous algae as biological monitors of heavy metal pollution in three lakes in a mining city, southeast China. Oceanological and Hydrobiological Studies 42: 233–242.CrossRefGoogle Scholar
  14. Chen, X., C. Li, S. McGowan & X. Yang, 2014. Diatom response to heavy metal pollution and nutrient enrichment in an urban lake: evidence from paleolimnology. International Journal of Limnology 50: 121–130.CrossRefGoogle Scholar
  15. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  16. Cushman, R. M., 1984. Chironomid deformities as indicators of pollution from a synthetic, coal-derived oil. Freshwater Biology 14: 179–182.CrossRefGoogle Scholar
  17. Davies, T. J., V. Savolainen, M. W. Chase, J. Moat & T. G. Barraclough, 2004. Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society of London B-Biological Science 271: 2195–2200.CrossRefGoogle Scholar
  18. De Bisthoven, L. J., A. Vermeulen & F. Ollevier, 1998. Experimental induction of morphological deformities in Chironomus riparius larvae by chronic exposure to copper and lead. Archives of Environmental Contamination and Toxicology 35: 249–256.CrossRefGoogle Scholar
  19. Deng, Z. & L. Xie, 1995. A preliminary analysis of thee influences on piscatorial economics from water body contamination of Daye Lake. Journal of Central China Normal University (Natural Sciences) 29: 387–390. (in Chinese with English abstract).Google Scholar
  20. Dermott, R. M., 1991. Deformities in larval Procladius spp. and dominant Chironomini from the St. Clair River. Hydrobiologia 219: 171–185.CrossRefGoogle Scholar
  21. Di Veroli, A., R. Selvaggi, R. M. Pellegrino & E. Goretti, 2010. Sediment toxicity and deformities of chironomid larvae in Lake Piediluco (Central Italy). Chemosphere 79: 33–39.CrossRefPubMedGoogle Scholar
  22. Di Veroli, A., E. Goretti, M. L. Paumen, M. H. S. Kraak & W. Admiraal, 2012. Induction of mouthpart deformities in chironomid larvae exposed to contaminated sediments. Environmental Pollution 166: 212–217.CrossRefPubMedGoogle Scholar
  23. Di Veroli, A., F. Santoro, M. Pallottini, R. Selvaggi, F. Scardazza, D. Cappelletti & E. Goretti, 2014. Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies. Chemosphere 112: 9–17.CrossRefPubMedGoogle Scholar
  24. Dickman, M. & G. Rygiel, 1996. Chironomid larval deformity frequencies, mortality, and diversity in heavy-metal contaminated sediments of a Canadian riverine wetland. Environment International 22: 693–703.CrossRefGoogle Scholar
  25. Dickman, M., Q. Lan & B. Matthews, 1989. Teratogens in the Niagara River Watershed as reflected by chironomid (Diptera. Chironomidae) labial plate deformities. Water Quality Research Journal of Canada 24: 81–100.Google Scholar
  26. Dickman, M., I. Brindle & M. Benson, 1992. Evidence of teratogens in sediments of the Niagara River watershed as reflected by chironomid (Diptera: Chironomidae) deformities. Journal of Great Lakes Research 18: 467–480.CrossRefGoogle Scholar
  27. Fleeger, J. W., K. R. Carman & R. M. Nisbet, 2003. Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment 317: 207–233.CrossRefPubMedGoogle Scholar
  28. Grimm, E. C., 1993. TILIA v2.0 (computer software). In: Springfield I11: Illinois State Museum. Research and Collections Centre.Google Scholar
  29. Heiri, O. & A. F. Lotter, 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26: 343–350.CrossRefGoogle Scholar
  30. Heiri, O. & A. F. Lotter, 2003. 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. Journal of Paleolimnology 30: 273–289.CrossRefGoogle Scholar
  31. Ilyashuk, B., E. Ilyashuk & V. Dauvalter, 2003. Chironomid responses to long-term metal contamination: a paleolimnological study in two bays of Lake Imandra, Kola Peninsula, northern Russia. Journal of Paleolimnology 30: 217–230.CrossRefGoogle Scholar
  32. Langdon, P. G., Z. Ruiz, S. Wynne, C. D. Sayer & T. A. Davidson, 2010. Ecological influences on larval chironomid communities in shallow lakes: implications for paleolimnological interpretations. Freshwater Biology 55: 531–545.CrossRefGoogle Scholar
  33. Larocque, I., 2001. How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeography Palaeoclimatology Palaeoecology 172: 133–142.CrossRefGoogle Scholar
  34. Li, Z. H. & Y. D. Zhang, 2010. Study on the water pollution control of Dayehu Lake. Science Press, Beijing (in Chinese).Google Scholar
  35. Lu, Z., Y. Li, X. Ma, Y. Zhang, B. Huang, M. Zhang, L. Zhu & C. Liu, 2012. Surface water quality assessment in period 2000–2009 and forecasting on changing tendency of pollution in Daye Lake. Environmental Science & Technology 35: 174–178.Google Scholar
  36. Mao, X., X. Chen, C. Li & Y. Zhang, 2013. Distribution of heavy metal elements in surface water from three lakes in Daye City. Safety and Environmental Engineering 20: 33–37.Google Scholar
  37. Martinez, E., B. Moore, J. Schaumloffel & N. Dasgupta, 2002. The potential association between menta deformities and trace elements in Chironomidae (Diptera) taken from a heavy metal contaminated river. Archives of Environmental Contamination and Toxicology 42: 286–291.CrossRefPubMedGoogle Scholar
  38. Martinez, E., L. Wold, B. Moore, J. Schaumloffel & N. Dasgupta, 2006. Morphologic and growth responses in Chironomus tentans to arsenic exposure. Archives of Environmental Contamination and Toxicology 51: 529–536.CrossRefPubMedGoogle Scholar
  39. Mason, A. Z. & K. D. Jenkins, 1995. Metal detoxification in aquatic organisms. In Tessier, A. & D. Turner (eds), Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester: 479–608.Google Scholar
  40. Meregalli, G. & F. Ollevier, 2001. Exposure of Chironomus riparius larvae to 17 alpha-ethynylestradiol: effects on survival and mouthpart deformities. Science of the Total Environment 269: 157–161.CrossRefPubMedGoogle Scholar
  41. Meriläinen, J. J., J. Hynynen, A. Teppo, A. Palomaki, K. Granberg & P. Reinikainen, 2000. Importance of diffuse nutrient loading and lake level changes to the eutrophication of an originally oligotrophic boreal lake: a paleolimnological diatom and chironomid analysis. Journal of Paleolimnology 24: 251–270.CrossRefGoogle Scholar
  42. Odume, O. N., W. J. Muller, C. G. Palmer & F. O. Arimoro, 2012. Mentum deformities in Chironomidae communities as indicators of anthropogenic impacts in Swartkops River. Physics and Chemistry of the Earth, Parts A/B/C 50–52: 140–148.CrossRefGoogle Scholar
  43. Papas, P., 2007. Effect of macrophytes on aquatic invertebrates – a literature review. Freshwater Ecology, Arthur Rylah Institute for Environmental Research, Technical Report Series No. 158, Department of Sustainability and Environment, Melbourne. Melbourne Water, Melbourne, Victoria.Google Scholar
  44. Planello, R., M. J. Servia, P. Gomez-Sande, O. Herrero, F. Cobo & G. Morcillo, 2015. Transcriptional responses, metabolic activity and mouthpart deformities in natural populations of Chironomus riparius larvae exposed to environmental pollutants. Environmental Toxicology 30(4): 383–395.CrossRefPubMedGoogle Scholar
  45. Pramesthy, T. D., Y. Wardiatno & M. Krisanti, 2014. Deformitas Ligula Larva Tanypodinae sebagai Indikator Pencemaran Logam Berat di Danau Lido, Jawa Barat. Jurnal Ilmu Pertanian Indonesia 19: 74–79.Google Scholar
  46. Quinlan, R. & J. P. Smol, 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 327–342.CrossRefGoogle Scholar
  47. Randsalu-Wendrup, L., D. J. Conley, J. Carstensen & S. C. Fritz, 2016. Paleolimnological records of regime shifts in lakes in response to climate change and anthropogenic activities. Journal of Paleolimnology. doi: 10.1007/s10933-016-9884-4.Google Scholar
  48. Raunio, J., T. Ihaksi, A. Haapala & T. Muotka, 2007. Within- and among-lake variation in benthic macroinvertebrate communities – comparison of profundal grab sampling and the chironomid pupal exuvial technique. Journal of the North American Benthological Society 26: 708–718.CrossRefGoogle Scholar
  49. Reavie, E. D., J. A. Robbins, E. F. Stoermer, M. S. Douglas, G. E. Emmert, N. R. Morehead & A. Mudroch, 2005. Palaeolimnology of a fluvial lake downstream of Lake Superior and the industrialized region of Sault Saint Marie. Canadian Journal of Fisheries and Aquatic Sciences 62(11): 2586–2608.CrossRefGoogle Scholar
  50. Rieradevall, M. & S. J. Brooks, 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. Journal of Paleolimnology 25: 81–99.CrossRefGoogle Scholar
  51. Rippey, B., N. Rose, H. Yang, S. Harrad, M. Robson & S. Travers, 2008. An assessment of toxicity in profundal lake sediment due to deposition of heavy metals and persistent organic pollutants from the atmosphere. Environment International 34: 345–356.CrossRefPubMedGoogle Scholar
  52. Saether, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2: 65–74.Google Scholar
  53. Salmelin, J., K. M. Vuori & H. Hamalainen, 2015. Inconsistency in the analysis of morphological deformities in chironomidae (Insecta: Diptera) larvae. Environmental Toxicology and Chemistry 34(8): 1891–1898.CrossRefPubMedGoogle Scholar
  54. Scheffer, M., S. H. Hosper, M. J. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. TREE 8: 275–279.PubMedGoogle Scholar
  55. Shang, J., L. Zhang, B. Zhang & C. Fan, 2010. Bioturbation effect of Tanypus chinensis larvae on denitrification rate and process in sediments. Journal of Lake Sciences 22(5): 708–713.Google Scholar
  56. Shannon, C. E. & W. Weaver, 1963. The Mathematical Theory of Communication. University Illinois Press, Urbana.Google Scholar
  57. Smith, V. H., 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research 10(2): 126–139.CrossRefPubMedGoogle Scholar
  58. Tang, H., 2006. Biosystematic study on the chironomid larvae in China (Diptera: Chironomidae). Ph. D thesis. Nankai University, Tianjin (In Chinese).Google Scholar
  59. Ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca.Google Scholar
  60. Vanacker, M., A. Wezel, V. Payet & J. Robin, 2015. Determining tipping points in aquatic ecosystems: the case of biodiversity and chlorophyll α relations in fish pond systems. Ecological Indicators 52: 184–193.CrossRefGoogle Scholar
  61. Vermeulen, A. C., G. Liberloo, P. Dumont, F. Ollevier & B. Goddeeris, 2000. Exposure of Chironomus riparius larvae (diptera) to lead, mercury and β-sitosterol: effects on mouthpart deformation and moulting. Chemosphere 41: 1581–1591.CrossRefPubMedGoogle Scholar
  62. Vinogradov, G. A., 2000. Processes of ionic regulation in freshwater fish and invertebrates. Fiziologiya, biokhimiya i toksikologiya presnovodnykh zhivotnykh, pp. 3–28.Google Scholar
  63. Von Der Ohe, P. C. & M. Liess, 2004. Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environmental Toxicology and Chemistry 23: 150–156.CrossRefPubMedGoogle Scholar
  64. Wang, R., J. A. Dearing, P. G. Langdon, E. L. Zhang, X. D. Yang, V. Dakos & M. Scheffer, 2012. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492: 419–422.CrossRefPubMedGoogle Scholar
  65. Wang, S., 1994. New and little known Chironomidae (Diptera) from southern province of China. Entomotaxonomia 16: 135–149.Google Scholar
  66. Wang, W. X. & R. C. H. Dei, 2001. Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution 111: 233–240.CrossRefPubMedGoogle Scholar
  67. Warwick, W. F., 1989. Morphological deformities in larvae of Procladius Skuse (Diptera: Chironomidae) and their biomonitoring potential. Canadian Journal of Fisheries and Aquatic Sciences 46: 1255–1270.CrossRefGoogle Scholar
  68. Warwick, W. F., 1991. Indexing deformities in ligulae and antennae of Procladius larvae (Diptera: Chironomidae): application to contaminant-stressed environments. Canadian Journal of Fisheries and Aquatic Sciences 48: 1151–1166.CrossRefGoogle Scholar
  69. Warwick, W. F. & N. A. Tisdale, 1988. Morphological Deformities in Chironomus, Cryptochironomus, and Procladius Larvae (Diptera: Chironomidae) from Two Differentially Stressed Sites in Tobin Lake, Saskatchewan. Canadian Journal of Fisheries and Aquatic Sciences 45: 1123–1144.CrossRefGoogle Scholar
  70. Wiederholm, T., 1980. Use of benthos in lake monitoring. Journal (water Pollution Control Federation) 52(3): 537–547.Google Scholar
  71. Wiederholm, T., 1981. Associations of lake-living Chironomidae. A cluster analysis of Brundin’s and recent data from Swedish lakes. Schweizerische Zeitschrift fur Psychologie-Revue Suisse de Psychologie 43: 140–150.Google Scholar
  72. Wiederholm, T., 1983. Chironomidae of the Holarctic region Keys and diagnoses. Entomologica scandinavica Supplement 19: 1–457.Google Scholar
  73. Wiederholm, T., 1984. Incidence of deformed chironomid larvae (Diptera: Chironomidae) in Swedish lakes. Hydrobiologia 109: 243–249.CrossRefGoogle Scholar
  74. Yan, C. C. & X. H. Wang, 2006. Microchironomus Kieffer from China (Diptera: Chironomidae). Zootaxa 1108: 53–68.Google Scholar
  75. Yang, G. S., R. H. Ma, L. Zhang, J. H. Jiang, S. C. Yao, M. Zhang & H. A. Zeng, 2010. Lake status, major problems and protection strategy in China. Journal of Lake Science 22: 799–810. (in Chinese with English abstract).Google Scholar
  76. Zhang, E., A. Bedford, R. Jones, J. Shen, S. Wang & H. Tang, 2006. A subfossil chironomid-total phosphorus inference model for lakes in the middle and lower reaches of the Yangtze River. Chinese Science Bulletin 51: 2125–2132.CrossRefGoogle Scholar
  77. Zhang, E. L., Y. M. Cao, P. Langdon, R. Jones, X. D. Yang & J. Shen, 2012. Alternate trajectories in historic trophic change from two lakes in the same catchment, Huayang Basin, middle reach of Yangtze River, China. Journal of Paleolimnology 48: 367–381.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Engineering Research Center for Protection and Utilization of Bioresource in Ethnic Area of Southern ChinaSouth-Central University for NationalitiesWuhanPeople’s Republic of China
  2. 2.State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography & Limnology, Chinese Academy of SciencesNanjingPeople’s Republic of China
  3. 3.Research Centre of HydrobiologyJinan UniversityGuangzhouPeople’s Republic of China
  4. 4.Geography and EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations