Hydrobiologia

, Volume 779, Issue 1, pp 35–46 | Cite as

Molecular evidence of distinct evolutionary units in the sandhopper Talorchestia capensis (Amphipoda, Talitridae) along South African coasts

  • Simone Baldanzi
  • Gavin Gouws
  • Nigel P. Barker
  • Sara Fratini
Primary Research Paper

Abstract

Marine geographical and ecological barriers often reflect intraspecific genetic discontinuities among populations which may experience different selective pressures and undergo evolutionary divergence. While the phylogeography of marine intertidal invertebrates across the Atlantic/Indian Ocean transition received more attention, the population genetic structures of supralittoral direct developers across such transition area have been poorly investigated. Sandhoppers are supralittoral invertebrates characterised by a direct developmental mode (low dispersal ability), and Talorchestia capensis (Amphipoda, Talitridae) represents the most abundant species of sandhoppers along the South African coasts. To define population structure of T. capensis, we used a mitochondrial marker (the cytochrome oxidase subunit I gene, COX1). T. capensis showed a clean population structure with three main haplogroups genetically well separated, although this separation is not perfectly in line with geographical boundaries described for this area. The presence of separate evolutionary significant units is also confirmed by the shape of mismatch distribution, as well as the p distance values among groups. The overall results confirm the importance of mtDNA to retrieve information on the evolutionary history of species. This study suggests the evidence of a complex-species for this sandhoppers, which have never been considered before, providing fundamental basis for further studies.

Keywords

mtDNA marker COX1 Cryptic species Population genetics Sandy-beach ecology 

Notes

Acknowledgments

The authors are extremely grateful to Prof Christopher D. McQuaid for his precious comments on the first draft of this paper and for funding through the South African Research Chairs Initiative of the Department of Science and Technology. The authors extend their gratitude to Dr. Peter Teske for his advice on data analysis, Dr. Stefano Cannicci and Dr. Francesca Porri for their contribution on an early draft of this paper. SB is particularly grateful to Dr. C. Kelly for his help in the laboratory. The authors finally thank two anonymous reviewers who contributed to improve the manuscript. The work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa (NRF).

References

  1. Alvarado Bremer, J. R., J. Viñas, J. Mejuto, B. Ely & C. Pla, 2005. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Molecular Phylogenetic and Evolution 36: 169–187.CrossRefGoogle Scholar
  2. Anderson, R. J., A. Rand, M. D. Rothman, A. Share & J. J. Bolton, 2007. Mapping and quantifying the South African kelp resource. Scientific Journal of Marine Science 29: 369–378.Google Scholar
  3. Baldanzi, S., C. D. McQuaid, S. Cannicci & F. Porri, 2013. Environmental domains and range-limiting mechanisms: testing the abundant centre hypothesis using Southern African sandhoppers. PLoS ONE 8: e54598.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baldanzi, S., N. Weidberg, M. Fusi, S. Cannicci, C. D. McQuaid & F. Porri, 2015. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis. Oecologia 179: 1067–1078.CrossRefPubMedGoogle Scholar
  5. Bandelt, H.-J., P. Forster & A. Röhl, 1999. Median joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.CrossRefPubMedGoogle Scholar
  6. Benzie, J. A. H., 1999. Genetic structure of coral reef organisms: ghosts of dispersal past. American Zoologist 39: 131–145.CrossRefGoogle Scholar
  7. Brante, A., M. Fernández & F. Viard, 2012. Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata (Calyptraeidae) along the southeastern Pacific coast. Journal of Heredity 103: 630–637.CrossRefPubMedGoogle Scholar
  8. Broitman, B. R., S. A. Navarrete, F. Smith & S. D. Gaines, 2001. Geographic variation of southeastern Pacific intertidal communities. Marine Ecology Progress Series 224: 21–34.CrossRefGoogle Scholar
  9. Carson, H. S., M. P. López-Duarte, L. Rasmussen, D. Wang & L. A. Levin, 2010. Reproductive timing alters population connectivity in marine metapopulations. Current Biology 20: 1926–1931.CrossRefPubMedGoogle Scholar
  10. Collin, R., 2001. The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Molecular Ecology 10: 2249–2262.CrossRefPubMedGoogle Scholar
  11. Dahl, E., 1946. The Amphipoda of the Sound. Part 1. Terrestrial Amphipoda. Acta University Lund, N.F. Adv. 242, 1–53.Google Scholar
  12. Doyle, J. J. & J. L. Doyle, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.Google Scholar
  13. Dupanloup, I., S. Schneider & L. Excoffier, 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11: 2571–2581.CrossRefPubMedGoogle Scholar
  14. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedPubMedCentralGoogle Scholar
  15. Excoffier, L., G. Laval & S. Schneider, 2005. ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatic Online. 1: 47–50.Google Scholar
  16. Fanini, L. & J. Lowry, 2014. Coastal talitrids and connectivity between beaches: a behavioural test. Journal of Experimental Marine Ecology and Biology 457: 120–127.CrossRefGoogle Scholar
  17. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  18. Fraser, D. J. & L. Bernatchez, 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology 10: 2741–2752.CrossRefPubMedGoogle Scholar
  19. Fu, Y.-X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.PubMedPubMedCentralGoogle Scholar
  20. Fu, Y.-X. & W.-H. Li, 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709.PubMedPubMedCentralGoogle Scholar
  21. Hasegawa, M., H. Kishino & T. Yano, 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174.CrossRefPubMedGoogle Scholar
  22. Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. deWaard, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society, London B 270: 313–321.CrossRefGoogle Scholar
  23. Heuertz, M., S. Fineschi, M. Anzidei, R. Pastorelli, D. Salvini, L. Paule, et al., 2004. Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Molecular Ecolology 13: 3437–3452.CrossRefGoogle Scholar
  24. Huelsenbeck, J. P. & F. Ronquist, 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.CrossRefPubMedGoogle Scholar
  25. Kelly, R. P. & S. R. Palumbi, 2010. Genetic structure among 50 species of the northeastern Pacific Rocky Intertidal Community. PLoS ONE 5: e8594.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Knowlton, N., L. A. Weight, L. A. Solorzano, D. K. Mills & E. Berming-ham, 1993. Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the isthmus of Panama. Science 260: 1629–1632.CrossRefPubMedGoogle Scholar
  27. Kumar, S., K. Tamura & M. Nei, 2004. MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefing in Bioinformatics 5: 150–163.CrossRefGoogle Scholar
  28. Lombard, A. T., 2004. Marine Component of the National Spatial Biodiversity Assessment for the Development of South Africa’s National Biodiversity Strategic and Action Plan. National Botanical Institute: 101 pp.Google Scholar
  29. McQuaid, C. D., 2010. Marine connectivity: timing is everything. Current Biology 20: 938–940.CrossRefGoogle Scholar
  30. Mmonwa, K. L., P. R. Teske, C. D. McQuaid & N. P. Barker, 2015. Historical demography of southern African patellid limpets: congruence of population expansions, but not phylogeography. African Journal of Marine Science 37: 11–21.CrossRefGoogle Scholar
  31. Moritz, C., 1994. Defining “Evolutionarily Significant Units” for conservation. Trends in Ecology & Evolution 9: 373–375.CrossRefGoogle Scholar
  32. Pavesi, L., E. De Matthaeis, R. Tiedemann & V. Ketmaier, 2011. Temporal population genetics and COI phylogeography of the sandhopper Macarorchestia remyi (Amphipoda: Talitridae). Zoological Studies 50: 220–229.Google Scholar
  33. Pavesi, L., A. Deidun, E. De Matthaeis, R. Tiedemann & V. Ketmaier, 2012. Mitochondrial DNA and microsatellites reveal significant divergence in the beachflea Orchestia montagui (Talitridae: Amphipoda). Aquatic Science 74: 587–596.CrossRefGoogle Scholar
  34. Pavesi, L., R. Tiedemann, E. De Matthaeis & V. Ketmaier, 2013. Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea. Zoological Frontiers 10: 21.CrossRefGoogle Scholar
  35. Pelc, R. A., R. R. Warner & S. D. Gaines, 2009. Geographical patterns of genetic structure in marine species with contrasting life histories. Journal of Biogeography 36: 1881–1890.CrossRefGoogle Scholar
  36. Persson, L. E., 2001. Dispersal of Platorchestia platensis (Kröyer) (Amphipoda: Talitridae) along Swedish coasts: a slow but successful process. Estuaries Coastal and Shelf Science 52: 201–210.CrossRefGoogle Scholar
  37. Polzin, T. & S. V. Daneschmand, 2003. On Steiner trees and minimum spanning trees in hypergraphs. Operation Research Letters 31: 12–20.CrossRefGoogle Scholar
  38. Posada, D. & K. A. Crandall, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.CrossRefPubMedGoogle Scholar
  39. Ragionieri, L., S. Fratini, M. Vannini & D. Christoph, 2009. Phylogenetic and morphometric differentiation reveal geographic radiation and pseudocryptic speciation in a mangrove crab from the Indo-West Pacific. Molecular Phylogenetics and Evolution 52: 825–834.CrossRefPubMedGoogle Scholar
  40. Rivadeneira, M. M., M. Fernàndez & S. A. Navarrete, 2002. Latitudinal trends of species diversity in rocky intertidal herbivore assemblages: spatial scale and the relationship between local and regional species richness. Marine Ecology Progress Series 245: 123–131.CrossRefGoogle Scholar
  41. Rogers, A., 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49: 08–615.CrossRefGoogle Scholar
  42. Rogers, A. R. & H. Harpending, 1992. Population growth makes waves in the distribution of pairwise genetic distances. Molecular Biology and Evolution 9: 552–569.PubMedGoogle Scholar
  43. Sanford, E., M. S. Roth, G. C. Johns, J. P. Wares & G. N. Somero, 2003. Local selection and latitudinal variation in a marine predator-prey interaction. Science 300: 1135–1137.CrossRefPubMedGoogle Scholar
  44. Shaw, K. L., 2002. Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proceedings of the National Academy of Sciences of the United States of America 99: 16122–16127.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu & P. Flook, 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651–701.CrossRefGoogle Scholar
  46. Simpson, R., 2011. The invasive biology of the talitrid amphipod Platorchestia platensis in North West Europe. The Plymouth Student Scientist 4: 278–292.Google Scholar
  47. Swofford, D. L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, MA.Google Scholar
  48. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.PubMedPubMedCentralGoogle Scholar
  49. Tajima, F. & M. Nei, 1984. Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution 1: 269–285.PubMedGoogle Scholar
  50. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Biology and Evolution. doi: 10.1093/molbev/msr121.Google Scholar
  51. Tellier, F., A. P. Meynard, J. A. Correa, S. Faugeron & M. Valero, 2009. Phylogeographic analyses of the 30- S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: vicariance or parapatry? Molecular Phylogenetics and Evolution 53: 679–693.CrossRefPubMedGoogle Scholar
  52. Teske, P. R., I. Papadopoulos, G. I. Zardi, C. D. McQuaid, M. T. Edkins, C. L. Griffiths & N. P. Barker, 2007. Implications of life history for genetic structure and migration rates of southern African coastal invertebrates: planktonic, abbreviated and direct development. Marine Biology 152: 697–711.CrossRefGoogle Scholar
  53. Teske, P. R., H. Winker, C. D. McQuaid & N. P. Barker, 2009. A tropical/subtropical biogeographic disjunction in southeastern Africa separates two evolutionary significant units of an estuarine prawn. Marine Biology 156: 1265–1275.CrossRefGoogle Scholar
  54. Teske, P. R., S. von der Heyden, C. D. McQuaid & N. P. Barker, 2011. A review of marine phylogeography in southern Africa. South African Journal of Science 107: 43–53.CrossRefGoogle Scholar
  55. Teske, P. R., G. I. Zardi, C. D. McQuaid & K. R. Nicastro, 2013. Two sides of the same coin: extinctions and originations across the Atlantic/Indian Ocean boundary as consequences of the same climate oscillation. Frontiers in Biogeography 5: 48–59.Google Scholar
  56. Teske, P. R., S. Bader & T. R. Golla, 2015. Dispersal against an ocean current. Marine Ecology Progress Series 539: 153–163.CrossRefGoogle Scholar
  57. Thiel, M. & L. Gutow, 2005a. The ecology of rafting in the marine environment. I. The floating substrata. Oceanography and Marine Biology Annual Review. 42: 181–263.Google Scholar
  58. Thiel, M. & L. Gutow, 2005b. The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanography and Marine Biology Annual Review. 43: 279–418.CrossRefGoogle Scholar
  59. Toews, D. P. L. & A. Brelsford, 2012. The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology 21: 3907–3930.CrossRefPubMedGoogle Scholar
  60. Von der Heyden, S., K. Prochazka & R. C. K. Bowie, 2008. Significant population structure and asymmetric gene flow patterns amidst expanding populations of Clinus cottoides (Perciformes, Clinidae): application of molecular data to marine conservation planning in South Africa. Molecular Ecology 17: 4812–4826.CrossRefPubMedGoogle Scholar
  61. Wildish, D. J., 1970. Some factors affecting the distribution of Orchestia Leach in estuaries. Journal of Experimental Marine Biology and Ecology 5: 276–284.CrossRefGoogle Scholar
  62. Wright, S., 1951. The genetical structure of populations. Annual of Eugenetics 15: 323–354.CrossRefGoogle Scholar
  63. Zakas, C., J. Binford, S. A. Navarrete & J. P. Wares, 2009. Restricted gene flow in Chilean barnacles reflects an oceanographic and biogeographic transition zone. Marine Ecology Progress Series 394: 165–177.CrossRefGoogle Scholar
  64. Zardi, G. I., C. D. McQuaid, P. R. Teske & N. P. Barker, 2007. Unexpected genetic structure of indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussel populations in South Africa. Marine Ecology Progress Series 337: 135–144.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Simone Baldanzi
    • 1
    • 2
  • Gavin Gouws
    • 2
  • Nigel P. Barker
    • 3
  • Sara Fratini
    • 4
  1. 1.Estación Costera de Investigaciones MarinasPontificia Universidad Catolica de ChileLas Cruces Comuna El TaboChile
  2. 2.South African Institute for Aquatic Biodiversity (SAIAB)GrahamstownSouth Africa
  3. 3.Molecular Ecology and Systematics Group, Botany DepartmentRhodes UniversityGrahamstownSouth Africa
  4. 4.Department of BiologyUniversità degli Studi di FirenzeFlorenceItaly

Personalised recommendations