Advertisement

Hydrobiologia

, Volume 774, Issue 1, pp 137–154 | Cite as

Assessment of anthropogenic pressures on South European Atlantic bogs (NW Spain) based on hydrochemical data

  • Carmen Cillero
  • Ramón A. Díaz-Varela
  • Marco Rubinos
  • Pablo Ramil-Rego
WETLANDS BIODIVERSITY AND PROCESSES

Abstract

This study aims to identify the main mechanisms controlling the hydrochemistry of nine Atlantic bogs. The basic hypotheses are (i) the main functional characteristics of these wetlands (e.g. minerotrophic influence) can be traced and accurately quantified by seasonal hydrochemistry monitoring and (ii) influences (oceanity, pollution) of the surrounding environment at different scales can be statistically outlined. The effect of several landscape variables on bog water chemistry was assessed by combining water analysis with the analysis of spatial data via geographical information system (GIS) tools. The results did not show any significant relationship between hydrochemistry and land use/land cover at the watershed scale, but we found a significant relationship between the Zn concentration and the distance to a nearby power station (located outside the watersheds). A similar link was also established with N–NH4 +, in this case most likely related to the farming activities. Our results allowed us to identify the period of late summer to early autumn as the most appropriate for detecting minerotrophic traits in South European Atlantic mires. The study showed that an integrated analysis of hydrochemical data with territorial variables is a useful tool for management purposes in peatlands.

Keywords

Bog Hydrochemistry Seasonal data Anthropogenic pressures Pollution Landscape Spatial data Geographical information systems 

Notes

Acknowledgements

We are grateful to Dr. Carlos Real for his valuable help with statistical analyses and to Dr. Jordi Delgado and the three anonymous reviewers for their helpful comments. We also want to thank Dolores Codesido and the personnel of RIAIDT of the University of Santiago de Compostela for their assistance with the chemical analysis of water samples.

This work was partially funded by LIFE + TREMEDAL—Inland Wetlands of Northern Iberian Peninsula: Restoration and management of peatlands and wet environments. (LIFE11 NAT/ES/707) and research project Ref. EM2014-003 funded by “Proxectos Plan Galego IDT, Consellería de Cultura, Educación e Ordenación Universitaria. Xunta de Galicia”.

Supplementary material

10750_2016_2778_MOESM1_ESM.pdf (292 kb)
Supplementary material 1 (PDF 292 kb)
10750_2016_2778_MOESM2_ESM.pdf (11 kb)
Supplementary material 2 (PDF 11 kb)
10750_2016_2778_MOESM3_ESM.pdf (119 kb)
Supplementary material 3 (PDF 118 kb)
10750_2016_2778_MOESM4_ESM.pdf (71 kb)
Supplementary material 4 (PDF 71 kb)

References

  1. Bendell-Young, L., 2003. Peatland interstitial water chemistry in relation to that of surface pools along a peatland mineral gradient. Water, Air, and Soil Pollution 143: 363–375.CrossRefGoogle Scholar
  2. Berendse, F., N. Van Breemen, H. Rydin, A. Buttler, M. Heijmans, M. R. Hoosbeck, J. A. Lee, E. Mitchell, T. Saarinen, H. Vasander & B. Wallén, 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology. 7: 591–598.CrossRefGoogle Scholar
  3. Bobbink, R., M. Hornung & J. G. Roelofs, 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology 86: 717–738.CrossRefGoogle Scholar
  4. Bragazza, L. & R. Gerdol, 2002. Are nutrient availability and acidity-alkalinity gradients related in sphagnum-dominated peatlands? Journal of Vegetation Science 13: 473–482.CrossRefGoogle Scholar
  5. Bragazza, L., 2006. Heavy metals in bog waters: An alternative way to assess atmospheric precipitation quality? Global and Planetary Change 53: 290–298.CrossRefGoogle Scholar
  6. Calvo-Iglesias, M. S., U. Fra-Paleo, R. Crecente-Maseda & R. A. Diaz-Varela, 2006. Directions of change in land cover and landscape patterns from 1957 to 2000 in agricultural landscapes in NW Spain. Environmental Management 38: 921–933.CrossRefPubMedGoogle Scholar
  7. Cattell, R. B., 1966. The scree test for the number of factors. Multivariate Behavioral Research 1: 245–276.CrossRefPubMedGoogle Scholar
  8. C.P.T.O.P.V., 1995. Mapa topográfico de Galicia Escala1:5000. Consellería de Política Territorial, Obras Públicas e Vivenda. Xunta de GaliciaGoogle Scholar
  9. Damman, A. W. H., 1995. Major mire vegetation units in relation to the concepts of ombrotrophy and minerotrophy: a worlwide perspective. Gunneria 70: 23–34.Google Scholar
  10. De Wit, R., J. Leibreich, F. Vernier, F. Delmas, H. Beuffe, Ph Maison, J.-C. Chossat, C. Laplace-Treyture, R. Laplana, V. Clavé, M. Torre, I. Auby, G. Trut, D. Maurer & P. Capdeville, 2005. Relationship between land-use in the agro-forestry system of les Landes, nitrogen loading to and risk of macro-algal blooming in the Bassin d’Arcachon coastal lagoon (SW France). Estuarine, Coastal and Shelf Science 62: 453–465.CrossRefGoogle Scholar
  11. Diaz-Varela, R. A., Ramil-Rego, P. & S. Calvo-Iglesias, 2007a. Strategies of remote sensing monitoring of changes in NATURA 2000 sites: a practical assessment in coastal mountains of NW Iberian Peninsula—art. no. 674932. In: Ehlers, M. & U. Michel (eds) Remote Sensing for Environmental Monitoring, Gis Applications, and Geology VII; Vol. 6749: 74932.Google Scholar
  12. Díaz Varela, R.A., Díaz Varela, E.R., Ramil-Rego, P. & M.S. Calvo Iglesias, 2007b. Cuantificación efectos ambientales derivados de la fragmentación de hábitats por parques eólicos en áreas de montaña a partir de análisis orientado a objetos de ortofotografías aéreas y análisis del patrón espacial, in: XI Congreso Internacional de Ingenieria de Proyectos. Libro de Actas. Tomo 4. Environment and Spatial Planning. Universidad de Santiago de Compostela, Lugo, pp. 1202–1213.Google Scholar
  13. Díaz-Varela, R., P. Ramil-Rego, S. Calvo Iglesias & C. Muñoz Sobrino, 2008. Automatic habitat classification methods based on satellite images: A practical assessment in the NW Iberia coastal mountains. Environmental Monitoring and Assessment 144: 229–250.CrossRefPubMedGoogle Scholar
  14. EIONET, 2014. European Topic Centre on Biological Diversity. Habitat assessments at EU biogeographical level. Available from http://bd.eionet.europa.eu/article17/reports2012/habitat/summary/
  15. Fernández-Sanjurjo, M. J., V. Fernández-Vega & E. García-Rodeja, 1997. Atmospheric deposition and ionic concentration in soils under pine and deciduous forests in the river Sor catchment (Galicia, NW Spain). The Science of the Total Environment 204: 125–134.CrossRefGoogle Scholar
  16. Fernández, J. A., A. Rey & A. Carballeira, 2000. An extended study of heavy metal deposition in Galicia (NW Spain) based on moss analysis. The Science of the Total Environment 254: 31–44.CrossRefPubMedGoogle Scholar
  17. Galan, G., 1982. Caracterización petrológica y geoquímica de la granodiorita precoz de Vivero (Lugo, NW. de España). Trabajos de Geología, Universidad de Oviedo 12: 133–151.Google Scholar
  18. Gallego, J. L. R., J. E. Ortiz, C. Sierra, T. Torres & J. F. Llamas, 2013. Multivariate study of trace element distribution in the geological record of Roñanzas Peat Bog (Asturias, N. Spain). Paleoenvironmental evolution and human activities over the last 8000 cal yr BP. Science of the total Environment 454–455: 16–29.CrossRefPubMedGoogle Scholar
  19. García-Rodeja, E., M. J. Fernández-Sanjurjo & V. Fernández-Vega, 1998. Input—output ion fluxes in the river Sor catchment (Galicia, Nw Spain). Chemosphere 36: 1107–1112.CrossRefGoogle Scholar
  20. Gerdol, R., A. Pontin, M. Tomaselli, L. Bombonato, L. Brancaleoni, M. Gualmini, A. Petraglia, C. Siffi & A. Gargini, 2011. Hydrologic controls on water chemistry, vegetation and ecological patterns in two mires in the South-Eastern Alps (Italy). Catena 66: 86–97.CrossRefGoogle Scholar
  21. Glooschenko, W. A., L. Holloway & N. Arafat, 1986. The use of mires in monitoring the atmospheric deposition of heavy metals. Aquatic Botany 25: 179–190.CrossRefGoogle Scholar
  22. Gorham, E., 1956. The ionic composition of some bog and fen waters in the English Lake District. The Journal of Ecology 44: 142–152.CrossRefGoogle Scholar
  23. Gorham, E. & J. A. Janssens, 1992. Concepts of fen and bog reexamined in relation to bryophyte cover and the acidity of surface waters. Acta Societatis Botanicorum Poloniae 61: 7–20.CrossRefGoogle Scholar
  24. Guerrero, F., 1985. Estudio de las aguas de turberas españolas. Comunicaciones I.N.I.A. Serie General. Nº15. Instituto Nacional de Investigaciones agrarias. Ministerio de Agricultura, Pesca y Alimentación. Madrid.Google Scholar
  25. Hach Company, 2003. Odyssey DR/2500 Spectrophotometer. Procedure manual. Hach Company, Loveland.Google Scholar
  26. Hájek, M. & P. Hekera, 2004. Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses? Preslia, Praha 76: 1–14.Google Scholar
  27. Hem, J. D., 1989. Study and interpretation of the Chemical characteristics of natural water. Third Edition. United States Geological Survey. Water-Supply Paper 2254. U.S. Department of the Interior. Washington, D.C.Google Scholar
  28. Hurckuck, M., C. Brümmer, K. Mohr, L. Grünhage, H. Flessa & W. L. Kutsch, 2014. Determination of atmospheric nitrogen deposition to a semi-natural peat bog site in an intensively managed agricultural landscape. Atmospheric Environment 97: 296–309.CrossRefGoogle Scholar
  29. Izco, J., P. Ramil-Rego, M. I. Pardo, M. A. Rodríguez-Guitián, R. Romero, J. Díaz-Pazos & A. De Castro, 1998. Valoración y estado de conservación del Espacio Natural da Serra do Xistral e Cadramón. Xunta de Galicia. Consellería de Medio Ambiente. p. 318.Google Scholar
  30. Izco Sevillano, J. & P. Ramil-Rego, (Coord.) 2001. “Análisis y Valoración de la Sierra de O Xistral: un Modelo de Aplicación de la Directiva Hábitat en Galicia”. Xunta de Galicia. Consellería de Medio Ambiente. Centro de Información e Tecnoloxía Ambiental, Santiago de CompostelaGoogle Scholar
  31. Johnes, P. J., 1999. Understanding lake and catchment history as a tool for integrated lake management. Hydrobiologia 395(396): 41–60.CrossRefGoogle Scholar
  32. Joosten, H. & D. Clarke, 2002. Wise use of mires and peatlands. Background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society.Google Scholar
  33. Kalff, J., 2003. Limnology. Prentice Hall, New Jersey.Google Scholar
  34. Le Roux, G. & W. Shotyk, 2006. Weathering of inorganic matter in bogs. In Martini, I. P., A. Martínez-Cortizas & W. Chesworth (eds), Peatlands. Evolution and records of environmental and climate changes. Elsevier, Amsterdam: 197–215.CrossRefGoogle Scholar
  35. Malmer, N., 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64: 375–383.CrossRefGoogle Scholar
  36. Martínez-Cortizas, A., X. Pontevedra-Pombal, J. C. Novoa-Muñoz & E. García-Rodeja, 1997. Four thousand years of atmospheric Pb, Cd and Zn deposition recorded by the ombrotrophic peat bog of Penido Vello (Northwestern Spain). Water, Air and Soil Pollution 100: 387–403.CrossRefGoogle Scholar
  37. Martínez-Cortizas, A., X. Pontevedra-Pombal, E. García-Rodeja, J. C. Novoa Muñoz & W. Shotyk, 1999. Mercury in a spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 284: 939–942.CrossRefPubMedGoogle Scholar
  38. Martínez-Cortizas, A., Chesworth, W. & E. García-Rodeja, 2001. Dinámica geoquímica de las turberas de Galicia. In Martínez Cortizas, A. & E. García Rodeja (eds), Turberas de montaña de Galicia. Colección Técnica. Medio Ambiente. Consellería de Medio Ambiente. Xunta de Galicia. Santiago de Compostela, pp. 141–148.Google Scholar
  39. Martínez Cortizas, A., Pontevedra Pombal, X., Nóvoa Muñoz, J. C., Rodríguez Fernández, R. & J. A. López-Sáez, 2009. Turberas ácidas de esfagnos. In: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino.Google Scholar
  40. Martínez-Cortizas, A., Peiteado-Varela, E., Bindler, R., Biester, H. & A. Cheburkin, 2012. Geochimica et Cosmochimica Acta, 82:68–78.Google Scholar
  41. Mullen, S. F., J. A. Janssens & E. Gorham, 2000. Acidity of and the concentrations of major and minor metals in the surface waters of bryophyte assemblages from 20 North American bogs and fens. Canadian Journal of Botany 78: 718–727.CrossRefGoogle Scholar
  42. Muñoz Sobrino, C., P. Ramil-Rego, L. Gómez-Orellana & R. A. Diaz-Varela, 2005. Palynological data on major Holocene climatic events in NW Iberia. Boreas 34: 381–400.CrossRefGoogle Scholar
  43. Murphy, P. C., J. Ogilvie, K. Connor & P. Arp, 2007. Mapping wetlands: a comparison of two different approaches for New Brunswick, Canada. Wetlands 27(4): 846–854.Google Scholar
  44. Novak, M. & P. Pacherova, 2008. Mobility of trace metals in pore waters of two Central European peat bogs. Science of the Total Environment 394: 331–337.CrossRefPubMedGoogle Scholar
  45. Økland, R. H., T. Økland & K. Rydgren, 2001. A Scandinavian perspective on ecological gradients in north-west European mires: reply to Wheeler and Proctor. Journal of Ecology 89: 481–486.CrossRefGoogle Scholar
  46. Peña, R. M., S. García, C. Herrero & T. Lucas, 2001. Measurements and analysis of hydrogen peroxide rainwater levels in a Northwest region of Spain. Atmospheric Environment 35: 209–219.CrossRefGoogle Scholar
  47. Peña, R. M., S. García, C. Herrero, M. Losada, A. Vázquez & T. Lucas, 2002. Organic acids and aldehydes in rainwater in a northwest región of Spain. Atmospheric Environment 36: 5277–5288.CrossRefGoogle Scholar
  48. Prada, J. M., I. García, W. González, M. G. Fiestras, M. I. Espada & T. Lucas, 1993. Multivariate statistical analysis of precipitation chemistry in northwestern Spain. Water, Air, and Soil Pollution 69: 37–55.CrossRefGoogle Scholar
  49. Pratte, S., A. Mucci & M. Gameau, 2013. Historical records of atmospheric metal deposition along the St. Lawrence Valley (eastern Canada) based on peat bog cores. Atmospheric Environment 779: 831–840.CrossRefGoogle Scholar
  50. Proctor, M. C. F., 1992. Regional and local variation in the chemical composition of ombrogenous mire waters in Britain and Ireland. The Journal of Ecology 80(4): 719–736.CrossRefGoogle Scholar
  51. Proctor, M. C. F., 2003. Malham Tarn Moss: The surface-water chemistry of an ombrotrophic bog. Field Studies 10: 553–578.Google Scholar
  52. Proctor, M. C. F., 2005. Temporal variation in the surface-water chemistry of a blanket bog on Dartmoor, southwest England: analysis of 5 years’data. European Journal of Soil Science. doi: 10.1111/j.1365-2389.2005.00724.x.Google Scholar
  53. Ramil-Rego, P. & J. Izco, (Dir.) 2003. Galician Wetlands Inventory. Dirección Xeral de Conservación da Natureza. Xunta de Galicia.Google Scholar
  54. Ramil-Rego, P., M. J. Aira & T. Taboada Castro, 1994. Análisis polínico y sedimentológico de dos turberas en las Sierras Septentrionales de Galicia (N.O. de España). Revue de Paléobiologie. 12: 9–28.Google Scholar
  55. Ramil-Rego, P.; Rodríguez Guitián, M. & Rodríguez Oubiña, J., 1996. Valoración de los humedales continentales del NW Ibérico: Caracterización hidrológica, geomorfológica y vegetacional de las turberas de las Sierras Septentrionales de Galicia. In: Pérez Alberti, A. & Martínez Cortizas, A. (Eds). Avances en la reconstrucción paleoambiental de las áreas de montaña lucenses. Servicio Publicaciones. Diputación Provincial de Lugo, Lugo, pp. 165–187.Google Scholar
  56. Ramil-Rego, P., Muñoz Sobrino, C. & L. Gómez Orellana, 2002. Historia do Ecosistema Terrestre. In: F. Rodríquez Iglesias (Editor), Galicia. Natureza. Tomo XLIII. Natureza III. Hércules de Ediciones, S.A., A Coruña, pp. 475–512.Google Scholar
  57. Ramil-Rego, P., Rubinos, M.A., Hinojo, B.A, De Nóvoa, B., Ferreiro, J., Lorenzo, M. & M. Caracuel. 2011. Plan Director da Rede Natura 2000 de Galicia. Anexo V. Espazos de Humidais e Corrredores Fluviais. Xunta de Galicia. Consellería de Medio Rural. Dirección Xeral de Conservación da Natureza.Google Scholar
  58. Rausch, N., L. Ukonmaanaho, T. Nieminen, M. Krachler & W. Shotyk, 2005. Porewater evidence of metal(Cu, Ni Co, Zn, Cd) mobilization in an acidic, ombrotrophic bog impacted by a smelter, Harjavalta, Finland and comparison with reference sites. Environmental Science and Technology 39: 8207–8213.CrossRefPubMedGoogle Scholar
  59. Rodríguez-Lado, L. & F. Macías, 2006. Calculation and mapping of critical loads of sulphur and nitrogen for forest soils in Galicia (NW Spain). Science of the Total Environment 366: 760–771.CrossRefPubMedGoogle Scholar
  60. Rodríguez-Guitián, M. A., P. Ramil-Rego, C. Real, R. A. Díaz Varela, J. Ferreiro Da Costa & C. Cillero, 2009. Caracterización vegetacional de los complejos de turberas de cobertor activas del SW europeo. In: Botanica Pirenaico-Cantabrica en el siglo XXI. Llamas, F & Acedo, C (Eds.), Publicaciones Universidad de León. 633–654.Google Scholar
  61. Shotyk, W., 1988. Review of the inorganic geochemistry of peats and peatland waters. Earth Science Reviews 25: 95–176.CrossRefGoogle Scholar
  62. Shotyk, W., P. Blaser, A. Grünig & A. K. Cherbukin, 2000. A new approach for quantifying cumulative anthropogenic, atmospheric lead deposition usin peat cores from bogs: Pb in eight Swiss peat bog profiles. The Science of the Total Environment 249: 281–295.CrossRefPubMedGoogle Scholar
  63. Silva, B., T. Rivas, E. García-Rodeja & B. Prieto, 2007. Distribution of ions of marine origin in Galicia (NW Spain) as a function of distance from the sea. Atmospheric Environment 41: 4396–4407.CrossRefGoogle Scholar
  64. Sjörs, H., 1952. On the relation between vegetation and electrolytes in north swedish mire waters. Oikos 2: 241–258.CrossRefGoogle Scholar
  65. Sjörs, H. & U. Gunnarson, 2002. Calcium and pH in north and central Swedish mire waters. Journal of Ecology 90: 650–657.CrossRefGoogle Scholar
  66. Smieja-Król, B. & A. Bauerek, 2015. Controls on trace-element concentrations in the pore waters of two Sphagnum-dominated mires in southern Poland that are heavily polluted by atmospheric deposition. Journal of Geochemical Exploration 15: 57–65.CrossRefGoogle Scholar
  67. Tahvanainen, T., 2005. Diversity of water chemistry and vegetation of mires in the Kainuu Region, middle boreal Finland. PhD. Dissertation in Biology. University of Joensuu.Google Scholar
  68. Tahvanainen, T. & T. Tuomaala, 2003. The reliability of mire water ph measurements—a standard sampling protocol and implications to ecological theory. Wetlands 23: 701–708.CrossRefGoogle Scholar
  69. Tahvanainen, T., T. Sallantaus, R. Heikklilä & K. Tolonen, 2002. Spatial variation of mire surface water chemistry and vegetation in northeastern Finland. Annales Botanici Fennici 39: 235–251.Google Scholar
  70. Tahvanainen, T., T. Sallantaus & R. Heikklilä, 2003. Seasonal variation of water chemical gradients in three boreal fens. Annales Botanici Fennici 40: 345–355.Google Scholar
  71. Tomassen, H. B., A. J. P. Smolders, L. P. M. Lamers & J. G. M. Roelofs, 2003. Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition. Journal of Ecology 91: 357–370.CrossRefGoogle Scholar
  72. Urban, N. R., S. J. Eisenrech & E. Gorham, 1987. Aluminium, iron, zinc, and lead in bog waters of northeastern North America. Canadian Journal of Fisheries and Aquatic Sciences 44: 1165–1172.CrossRefGoogle Scholar
  73. Vázquez, A., M. Costoya, R. M. Peña, S. García & C. Herrero, 2003. A rainwater quality monitoring network: a preliminary study of the composition of rainwater in Galicia (NW Spain). Chemosphere. 51: 375–386.CrossRefPubMedGoogle Scholar
  74. Vitt, D. H., 2000. Peatlands: ecosystems dominated by bryophytes. In: Shaw, J.R. & Goffinet, B. (eds), Bryophyte Biology. Cambridge University Press. Cambridge, pp. 312–343.Google Scholar
  75. Wetzel, R. G. & G. E. Lickens, 1991. Limnologycal Analyses, 2º ed. Springer, Ann Arbor, MI.CrossRefGoogle Scholar
  76. Wheeler, B. D. & C. F. Proctor, 2000. Ecological, gradients, subdivisions and terminology of north-west European mires. Journal of Ecology 88: 187–203.CrossRefGoogle Scholar
  77. Wojtun, B., A. Samecka-Cimmerman, K. Kolon & A. J. Kempers, 2013. Decreasing concentrations of metals in Sphagnum mosses in ombrotrophic mires of the Sudety mountains (SW Poland) since late 1980s. Chemosphere 91: 1456–1461.CrossRefPubMedGoogle Scholar
  78. Xie, Z., Z. Liu, J. W. Jones, A. L. Higer & P. A. Telis, 2011. Landscape unit based digital elevation model development for the freshwater wetlands within the Arthur C. Marshall Loxahatchee National Wildlife Refuge, Southeastern Florida. Applied Geography, 31(2): 401–412.Google Scholar
  79. Xunta de Galicia, 2005. Anuario Climatolóxico de Galicia 2004. Conselleria de Medio Ambiente. Dirección Xeral de Desenvolvemento Sostible. Santiago de Compostela.Google Scholar
  80. Xunta de Galicia, 2010. MeteoGalicia; Consellería de Medio Ambiente, Territorio e Infraestruturas; Xunta de Galicia. Available from http://www2.meteogalicia.es/galego/observacion/estacions/estacions.asp

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carmen Cillero
    • 1
    • 3
  • Ramón A. Díaz-Varela
    • 2
  • Marco Rubinos
    • 1
    • 3
  • Pablo Ramil-Rego
    • 1
  1. 1.IBADER GI-1934-TeBioUniversity of Santiago de CompostelaLugoSpain
  2. 2.Botany Department GI-1809-BIOAPLIC, Escola Politécnica Superior de LugoUniversity of Santiago de CompostelaLugoSpain
  3. 3.3edata, R&D DepartmentVivero Fundación CELLugoSpain

Personalised recommendations