Advertisement

Hydrobiologia

, Volume 777, Issue 1, pp 67–78 | Cite as

Assessing filtration rates of exotic bivalves: dependence on algae concentration and seasonal factors

  • Jonathan MarescauxEmail author
  • Elodie Falisse
  • Julien Lorquet
  • Karine Van Doninck
  • Jean-Nicolas Beisel
  • Jean-Pierre Descy
Primary Research Paper

Abstract

Due to their high filtration rates, exotic freshwater bivalves remove suspended organic matter from the water column, transferring resources to the sediment and increasing water clarity, which alters ecosystems. While there is a considerable amount of data on filtration rate of exotic bivalves, comparison between species is often invalid due to the utilization of different protocols for assessing filtration in experimental conditions. In this study, we quantified and compared for the first time the filtration rates of the zebra and quagga mussels and of two invasive Corbicula lineages (forms R and S) as a function of chlorophyll a concentration and season. The highest filtration rate observed was for the zebra mussel in fall and at high algal biomass. The incipient limiting level (ILL), defined as the chlorophyll a concentration at which the maximum filtration rate is observed, was observed in spring and summer in Corbicula species, and in summer and fall in Dreissena species. Overall, filtration rates presented a large range of variation, depending on chlorophyll a and season. Overall, Corbicula form S was observed as the best adapted to low food concentration. Moreover, Corbicula can switch to pedal feeding which gives them a competitive advantage at low chlorophyll a concentrations.

Keywords

Dreissena Corbicula Filtration rate Phytoplankton Seasonal factors 

Notes

Acknowledgments

We are grateful to Emilie Etoundi, Julie Virgo and William Otjacques for their help during the experiments and to Gilles Lepoint for the organic carbon measurements. This study received financial support from the University of Namur and from a project of the European Fisheries Fund (FEP 32-1109-004) coordinated by Patrick Kestemont. Jonathan Marescaux held a PhD grant from the Belgian National Fund for Scientific Research (FRS-FNRS).

Supplementary material

10750_2016_2764_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)

References

  1. Ackerman, J. D., 1999. Effect of velocity on the filter feeding of dreissenid mussels (Dreissena polymorpha and Dreissena bugensis): implications for trophic dynamics. Canadian Journal of Fisheries and Aquatic Sciences 56: 1551–1561.CrossRefGoogle Scholar
  2. Aldridge, D. W., B. S. Payne & A. C. Miller, 1995. Oxygen consumption, nitrogenous excretion, and filtration rates of Dreissena polymorpha at acclimation temperatures between 20 and 32°C. Canadian Journal of Fisheries and Aquatic Sciences 52: 1761–1767.CrossRefGoogle Scholar
  3. Baldwin, B. S., M. S. Mayer, J. Dayton, N. Pau, J. Mendilla, M. Sullivan, A. Moore, A. Ma & E. L. Mills, 2002. Comparative growth and feeding in zebra and quagga mussels (Dreissena polymorpha and Dreissena bugensis): implications for North American lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 680–694.CrossRefGoogle Scholar
  4. Bates, D., M. Maechler, B. Bolker & S. Walker, 2014. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4.
  5. Boltovskoy, D., I. Izaguirre & N. Correa, 1995. Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia 312: 171–182.CrossRefGoogle Scholar
  6. Bunt, C. M., H. J. MacIsaac & W. G. Sprules, 1993. Pumping rates and projected filtering impacts of juveniles zebra mussels (Dreissena polymorpha) in Western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 50: 1017–1022.CrossRefGoogle Scholar
  7. Cohen, R. R. H., P. V. Dresler, E. J. P. Phillips & R. L. Cory, 1984. The effect of the Asiatic clam, Corbicula fluminea, on phytoplankton of the Potomac river, Maryland. Limnology and Oceanography 29: 170–180.CrossRefGoogle Scholar
  8. Coughlan, J., 1969. The estimation of filtering rate from the clearance of suspensions. Marine Biology 2: 356–358.CrossRefGoogle Scholar
  9. Diggins, T. P., 2001. A seasonal comparison of suspended sediment filtration by quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels. Journal of Great Lakes Research 27: 457–466.CrossRefGoogle Scholar
  10. Fanslow, D. L., T. F. Nalepa & G. A. Lang, 1995. Filtration rates of the zebra mussel (Dreissena polymorpha) on natural seston from Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 489–500.CrossRefGoogle Scholar
  11. Gosselain, V., J.-P. Descy, L. Viroux, C. Joaquim-Justo, A. Hammer, A. Métens & S. Schweitzer, 1998. Grazing by large river zooplankton: a key to summer phytoplankton decline? The case of the Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia 369: 199–216.CrossRefGoogle Scholar
  12. Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.CrossRefPubMedGoogle Scholar
  13. Higgins, S. N., M. J. Vander Zander, L. N. Joppa & Y. Vadeboncoeur, 2014. The effect of dreissenid invasions on chlorophyll and the chlorophyll: total phosphorus ratio in north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences 68: 319–329.Google Scholar
  14. Hornbach, D. J., C. M. Way, T. E. Wissing & A. J. Burky, 1984. Effects of particle concentration and season on the filtration rates of the freshwater clam, Sphaerium striatinum Lamarck (Bivalvia: Pisidiidae). Hydrobiologia 108: 83–96.Google Scholar
  15. Jeschke, J. M., M. Kopp & R. Tollrian, 2004. Consumer-food systems: why type I functional responses are exclusive to filter-feeders. Biological Reviews 79: 337–349.CrossRefPubMedGoogle Scholar
  16. Jørgensen, C. B., T. Kiørboe, F. Møhlenberg & H. U. Riisgård, 1984. Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics. Marine Ecology 15: 283–292.CrossRefGoogle Scholar
  17. Kasai, A. & A. Nakata, 2005. Utilization of terrestrial organic matter by the bivalve Corbicula japonica estimated from stable isotope analysis. Fisheries Science 71: 151–158.CrossRefGoogle Scholar
  18. Kryger, J. & H. U. Riisgård, 1988. Filtration rate capacities in 6 species of European freshwater bivalves. Oecologia 77: 34–38.CrossRefGoogle Scholar
  19. Liu, Y., P. Xie & X. P. Wu, 2009. Grazing on toxic and non-toxic Microcystis aeruginosa PCC7820 by Unio douglasiae and Corbicula fluminea. Limnology 10: 1–5.CrossRefGoogle Scholar
  20. Marescaux, J., L.-M. Pigneur & K. Van Doninck, 2010. New records of Corbicula clams in French rivers. Aquatic Invasions 5: S35–S39.Google Scholar
  21. Marescaux, J., A. Bij de Vaate & K. Van Doninck, 2012a. First records of Dreissena rostriformis bugensis (Andrusov, 1897) in the Meuse River. BioInvasions Records 1: 119–124.Google Scholar
  22. Marescaux, J., D. P. Molloy, L. Giamberini, C. Albrecht & K. Van Doninck, 2012b. First records of the quagga mussel, Dreissena rostriformis bugensis (Andrusov, 1897), in the Meuse River within France. BioInvasions Records 1: 273–276.CrossRefGoogle Scholar
  23. Pigneur, L.-M., J. Marescaux, K. Roland, E. Etoundi, J.-P. Descy & K. Van Doninck, 2011. Phylogeny and androgenesis in the invasive Corbicula clams (Bivalvia, Corbiculidae) in Western Europe. BMC Evolutionary Biology 11: 147.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Pigneur, L.-M., E. Falisse, K. Roland, E. Everbecq, J.-F. Deliège, J. S. Smitz, K. Van Doninck & J.-P. Descy, 2014. Impact of invasive Asian clams, Corbicula spp., on a large river ecosystem. Freshwater Biology 59: 573–583.CrossRefGoogle Scholar
  25. R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
  26. Rajagopal, S., G. van der Velde & A. Bij de Vaate, 2000. Reproductive biology of the Asiatic clams Corbicula fluminalis and Corbicula fluminea in the river Rhine. Archiv für Hydrobiologie 149: 403–420.CrossRefGoogle Scholar
  27. Reeders, H. H., A. Bij de Vaate & F. J. Slim, 1989. The filtration rate of Dreissena polymorpha (Bivalvia) in three Dutch lakes with reference to biological water quality management. Freshwater Biology 22: 133–141.CrossRefGoogle Scholar
  28. Reeders, H. H. & A. Bij de Vaate, 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200(201): 437–450.CrossRefGoogle Scholar
  29. Roditi, H. A., N. F. Caraco, J. J. Cole & D. L. Strayer, 1996. Filtration of Hudson River water by the zebra mussel (Dreissena polymorpha). Estuaries 19: 824–832.CrossRefGoogle Scholar
  30. Rothhaupt, K. O., 1990. Changes of the functional responses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes. Limnology and Oceanography 35: 24–32.CrossRefGoogle Scholar
  31. Silverman, H., A. C. Achberger, J. W. Lynn & T. H. Dietz, 1995. Filtration and utilization of laboratory-cultured bacteria by Dreissena polymorpha, Corbicula fluminea, and Carunculina taxasensis. The Biological Bulletin 189: 308–319.CrossRefGoogle Scholar
  32. Silverman, H., J. W. Lynn, E. C. Achberger & T. H. Dietz, 1996. Gill structure in zebra mussels: bacterial-sized particle filtration. American Zoologist 36: 373–384.CrossRefGoogle Scholar
  33. Sousa, R., A. Novais, R. Costa & D. L. Strayer, 2013. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia. doi: 10.1007/s10750-012-1409-1.Google Scholar
  34. Sprung, M., 1995. Physiological energetics of the zebra mussel Dreissena polymorpha in lakes: food uptake and gross growth efficiency. Hydrobiologia 304: 133–146.CrossRefGoogle Scholar
  35. Sprung, M. & U. Rose, 1988. Influence of food size and food quality on the feeding of the mussel Dreissena polymorpha. Oecologia 77: 526–532.CrossRefGoogle Scholar
  36. Strayer, D. L., N. F. Caraco, J. J. Cole, S. Findlay & M. L. Pace, 1999. Transformation of freshwater ecosystems by bivalves. BioSciences 49: 19–27.CrossRefGoogle Scholar
  37. Sumerel, A. N., 2009. Flume study of particle-size-dependent filtration rates of a solitary ascidian: the influence of body size, flow speed, and drag. Thesis, University of North Carolina, WilmingtonGoogle Scholar
  38. Tang, H., H. A. Vanderploeg, T. H. Johengen & J. R. Liebig, 2013. Quagga mussel (Dreissena rostriformis bugensis) selective feeding of phytoplankton in Saginaw Bay. Journal of Great Lakes Research 40: 83–94.CrossRefGoogle Scholar
  39. Vanderploeg, H. A., J. R. Liebig, T. F. Nalepa, G. L. Fahnensiel & S. A. Pothoven, 2010. Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research 36: 50–59.CrossRefGoogle Scholar
  40. Viergutz, C., C. Linn & M. Weitere, 2012. Intra- and interannual variability surpasses direct temperature effects on the clearance rates of the invasive clam Corbicula fluminea. Marine Biology 159: 2379–2387.CrossRefGoogle Scholar
  41. Vohmann, A., J. Borcherding, A. Kureck, A. Bij de Vaate, H. Arndt & M. Weitere, 2010. Strong body mass decrease of the invasive clam Corbicula fluminea during summer. Biological Invasions 12: 53–64.CrossRefGoogle Scholar
  42. Von Rückert, G. & A. Giari, 2008. Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research 30: 1157–1168.CrossRefGoogle Scholar
  43. Wallace, J. B., J. R. Webster & W. R. Woodall, 1977. The role of filter feeders in flowing waters. Archiv für Hydrobiologie 79: 506–532.Google Scholar
  44. Young, B. L., D. K. Padilla, D. W. Schneider & S. W. Hewett, 1996. The importance of size-frequency relationships for predicting ecological impact of zebra mussel populations. Hydrobiologia 332: 151–158.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jonathan Marescaux
    • 1
    Email author
  • Elodie Falisse
    • 1
  • Julien Lorquet
    • 1
  • Karine Van Doninck
    • 1
  • Jean-Nicolas Beisel
    • 2
    • 3
  • Jean-Pierre Descy
    • 1
  1. 1.Department of Biology, Research Unit in Environmental and Evolutionary Biology (URBE)University of NamurNamurBelgium
  2. 2.Ecole Nationale du Génie de l’Eau et de l’Environnement de StrasbourgStrasbourgFrance
  3. 3.Laboratoire Image, Ville, Environnement (LIVE)UMR 7362 CNRS - Université de Strasbourg - 3StrasbourgFrance

Personalised recommendations