, Volume 776, Issue 1, pp 139–146 | Cite as

Direct and indirect effects of sunscreen exposure for reef biota

  • Shaun M. McCoshumEmail author
  • Alicia M. Schlarb
  • Kristen A. Baum
Primary Research Paper


Coral reefs are ecologically and economically important, contributing to both fishing and ecotourism economies around the world. Tourism and recreational activities have increased in coastal areas and so has the use of sunscreen. Sunscreen reduces human exposure to harmful UV rays, but washes off during aquatic recreational activities, which may negatively affect reef biota. To evaluate how sunscreen affects coral reef ecosystems, we added sunscreen at concentrations similar to previous studies to growing environments containing flatworms (Convolutriloba macropyga) with symbiotic algae, photosynthetic diatoms (Nitzschia sp.), Aiptasia anemones, and pulse corals (Xenia sp.). Using behavioral observations and estimates of population and colony growth, we show nominal concentrations of sunscreen negatively affect all of the studied species. Furthermore, we show that mobile flatworms do not avoid water which contains sunscreen and flatworms exposed to sunscreen prefer darker conditions. Based on our results, beach goers should limit use of sunscreens when near coral reefs and consider alternative protective measures, such as the utilization of sun-protective clothing.


Sunscreen Ecotourism Coral reef Soft coral Contamination Flatworms Anemone 



Penny and Terry Szwed for travel assistance; Association of North Central Oklahoma Reefkeepers, Paul Whitby and Advanced Aquatics, Tulsa OK for reef organisms.


  1. Bachelot, M., Z. Li, D. Munaron, P. Le Gall, C. Casellas, H. Fenet & E. Gomez, 2012. Organic UV filter concentrations in marine mussels from French coastal regions. Science of the Total Environment 420: 273–279.CrossRefPubMedGoogle Scholar
  2. Balmer, M. E., H.-R. Buser, M. D. Müller & T. Poiger, 2005. Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environmental science & technology 39: 953–962.CrossRefGoogle Scholar
  3. Bartley, R., Z. T. Bainbridge, S. E. Lewis, F. J. Kroon, S. N. Wilkinson, J. E. Brodie & D. M. Silburn, 2014. Relating sediment impacts on coral reefs to watershed sources, processes and management: a review. Science of the Total Environment 468: 1138–1153.CrossRefPubMedGoogle Scholar
  4. Bellwood, D. R., T. P. Hughes, C. Folke & M. Nystrom, 2004. Confronting the coral reef crisis. Nature 429: 827–833.CrossRefPubMedGoogle Scholar
  5. Botta, C., J. Labille, M. Auffan, D. Borschneck, H. Miche, M. Cabié, A. Masion, J. Rose & J.-Y. Bottero, 2011. TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environmental Pollution 159: 1543–1550.CrossRefPubMedGoogle Scholar
  6. Carl, M., 2013. Predators and pests of captive corals. In Leewis, R. J. & M. Janse (eds), Advances in Coral Husbandry in Public Aquariums, Vol. 2., Public aquarium husbandry series Burgers’ Zoo, Arnhem: 31–36.Google Scholar
  7. Chen, J., X. Dong, Y. Xin & M. Zhao, 2011. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquatic Toxicology 101: 493–499.CrossRefPubMedGoogle Scholar
  8. Coghlan, A. & B. Prideaux, 2009. Welcome to the wet tropics: the importance of weather in reef tourism resilience 1. Current Issues in Tourism 12: 89–104.CrossRefGoogle Scholar
  9. Cohen, Y., A. Nissenbaum & R. Eisler, 1977. Effects of Iranian crude oil on the Red Sea octocoral Heteroxenia fuscescens. Environmental Pollution 12: 173–186.CrossRefGoogle Scholar
  10. Danovaro, R. & C. Corinaldesi, 2003. Sunscreen products increase virus production through prophage induction in marine bacterioplankton. Microbial Ecology 45: 109–118.CrossRefPubMedGoogle Scholar
  11. Danovaro, R., L. Bongiorni, C. Corinaldesi, D. Giovannelli, E. Damiani, P. Astolfi, L. Greci & A. Pusceddu, 2008. Sunscreens cause coral bleaching by promoting viral infections. Environmental health perspectives 116: 441.PubMedPubMedCentralGoogle Scholar
  12. Davenport, J. & J. L. Davenport, 2006. The impact of tourism and personal leisure transport on coastal environments: a review. Estuarine, Coastal and Shelf Science 67: 280–292.CrossRefGoogle Scholar
  13. Dinesen, Z., 1983. Patterns in the distribution of soft corals across the central Great Barrier Reef. Coral Reefs 1: 229–236.CrossRefGoogle Scholar
  14. Downs, C., E. Kramarsky-Winter, J. E. Fauth, R. Segal, O. Bronstein, R. Jeger, Y. Lichtenfeld, C. M. Woodley, P. Pennington & A. Kushmaro, 2014. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata. Ecotoxicology 23: 175–191.CrossRefPubMedGoogle Scholar
  15. Downs, C., E. Kramarsky-Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F. R. Ciner, R. Jeger, Y. Lichtenfeld & C. M. Woodley, 2016. Toxicopathological effects of the sunscreen UV filter, Oxybenzone (Benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the US Virgin Islands. Archives of environmental contamination and toxicology 70: 265–288.CrossRefPubMedGoogle Scholar
  16. Fent, K., A. Zenker & M. Rapp, 2010. Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland. Environmental Pollution 158: 1817–1824.CrossRefPubMedGoogle Scholar
  17. FitzPatrick, S., K. Liberatore, J. Garcia, I. Burghardt, D. Colman, S. Moquin, C. Takacs-Vesbach & U. Shepherd, 2012. Symbiodinium diversity in the soft coral Heteroxenia sp. and its nudibranch predator Phyllodesmium lizardensis. Coral Reefs 31: 895–905.CrossRefGoogle Scholar
  18. Handy, R., R. Owen & E. Valsami-Jones, 2008. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17: 315–325.CrossRefPubMedGoogle Scholar
  19. Iii, T. S. & J. G. Achatz, 2007. Convolutriloba macropyga sp. nov., an uncommonly fecund acoel (Acoelomorpha) discovered in tropical aquaria. Zootaxa 1525: 1–17.CrossRefGoogle Scholar
  20. Jennison, B. L., 1981. Reproduction in three species of sea anemones from Key West, Florida. Canadian Journal of Zoology 59: 1708–1719.CrossRefGoogle Scholar
  21. Jinendradasa S, Ekaratne S. 2002. Composition and monthly variation of fauna inhabiting reef-associated Halimeda. Proceedings of the Ninth International Coral Reef Symposium, Bali, 23–27 October 2000: 1059–1063.Google Scholar
  22. Kim, J.-W., T. Isobe, B. R. Ramaswamy, K.-H. Chang, A. Amano, T. M. Miller, F. P. Siringan & S. Tanabe, 2011. Contamination and bioaccumulation of benzotriazole ultraviolet stabilizers in fish from Manila Bay, the Philippines using an ultra-fast liquid chromatography–tandem mass spectrometry. Chemosphere 85: 751–758.CrossRefPubMedGoogle Scholar
  23. Kowalewski, M., R. Domènech & J. Martinell, 2014. Vanishing clams on an Iberian beach: local consequences and global implications of zccelerating loss of shells to tourism. PLoS One 9: e83615.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kremien, M., U. Shavit, T. Mass & A. Genin, 2013. Benefit of pulsation in soft corals. Proceedings of the National Academy of Sciences 110: 8978–8983.CrossRefGoogle Scholar
  25. Kumari, S., M. Behera & H. Tewari, 2010. Identification of potential ecotourism sites in West District, Sikkim using geospatial tools. Tropical Ecology 51: 75–85.Google Scholar
  26. León, Y. M. & K. A. Bjorndal, 2002. Selective feeding in the hawksbill turtle, an important predator in coral reef ecosystems. Marine Ecology Progress Series 245: 249–258.CrossRefGoogle Scholar
  27. McClanahan, T. R. & N. A. Muthiga, 1988. Changes in Kenyan coral reef community structure and function due to exploitation. Hydrobiologia 166: 269–276.CrossRefGoogle Scholar
  28. Morgan S. 2010. To pulse or not to pulse: a proposed theory to explain the pulsing behavior exhibited by the alcyonacean, Xenia elongata in Maryland SMsCo, ed. St. Mary’s City, MD.Google Scholar
  29. Newsome, D., S. A. Moore & R. K. Dowling, 2012. Natural Area Tourism: Ecology, Impacts and Management. Channel View Publications, Clevedon.Google Scholar
  30. Reyes-Nivia, C., G. Diaz-Pulido, D. Kline, O. H. Guldberg & S. Dove, 2013. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Global Change Biology 19: 1919–1929.CrossRefPubMedGoogle Scholar
  31. Sánchez-Quiles, D. & A. Tovar-Sánchez, 2015. Are sunscreens a new environmental risk associated with coastal tourism? Environment international 83: 158–170.CrossRefPubMedGoogle Scholar
  32. Sieratowicz, A., D. Kaiser, M. Behr, M. Oetken & J. Oehlmann, 2011. Acute and chronic toxicity of four frequently used UV filter substances for Desmodesmus subspicatus and Daphnia magna. Journal of Environmental Science and Health, Part A 46: 1311–1319.CrossRefGoogle Scholar
  33. Studivan, M. S., W. I. Hatch & C. L. Mitchelmore, 2015. Responses of the soft coral Xenia elongata following acute exposure to a chemical dispersant. SpringerPlus 4: 1–10.CrossRefGoogle Scholar
  34. Sundseth, K. 2000. Natura 2000 in the Macaronesian Region. Office for official publications of the European Communities, Luxembourg.Google Scholar
  35. Tovar-Sánchez, A., D. Sánchez-Quiles, G. Basterretxea, J. L. Benedé, A. Chisvert, A. Salvador, I. Moreno-Garrido & J. Blasco, 2013. Sunscreen products as emerging pollutants to coastal waters. PLoS One 8: e65451.CrossRefPubMedPubMedCentralGoogle Scholar
  36. UNWTO E. 2014. Handbook on Tourism Destination Branding. Madrid, Spain:
  37. Vanni, M. J., C. Luecke, J. F. Kitchell, Y. Allen, J. Temte & J. J. Magnuson, 1990. Effects on lower trophic levels of massive fish mortality. Nature 344: 333–335.CrossRefGoogle Scholar
  38. Weisbrod, C. J., P. Y. Kunz, A. K. Zenker & K. Fent, 2007. Effects of the UV filter benzophenone-2 on reproduction in fish. Toxicology and applied pharmacology 225: 255–266.CrossRefPubMedGoogle Scholar
  39. Wong, S. Y., P. Y. Leung, A. B. Djurišić & K. Y. Leung, 2010. Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry 396: 609–618.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  2. 2.Department of Integrative BiologyOklahoma State UniversityStillwaterUSA

Personalised recommendations