, Volume 776, Issue 1, pp 1–17 | Cite as

Trait-based ecological classifications for benthic algae: review and perspectives

  • Kálmán TapolczaiEmail author
  • Agnès Bouchez
  • Csilla Stenger-Kovács
  • Judit Padisák
  • Frédéric Rimet
Review Paper


A high number of species often represents a relevant redundancy in terms of ecological adaptation strategies. Collecting species to groups based on their functional adaptations can handle this redundancy and obtain the “real” functional complexity of ecosystems. Functional traits are proxies of adaptation strategies under particular environmental conditions, and a set of functional traits are interpreted as life-strategies. Organisms with life-strategies occupying a similar niche can be collected in ecological groups (functional group/guild). In this study, we review the latest trait-based approaches and existing attempts at functional classifications in phytobenthos studies. Advantages and shortcomings of these classifications are discussed with perspectives of their utility in ecological status assessment.


Benthic algae Diatoms Ecological groups Functional groups Guilds Life-forms Traits 



This study was funded by ONEMA (Office National de l’Eau et des Milieu Aquatiques).


  1. B-Béres, V., Á. Lukács, P. Török, Z. Kókai, Z. Novák, E. T-Krasznai, B. Tóthmérész & I. Bácsi, 2016. Combined eco-morphological functional groups are reliable indicators of colonisation processes of benthic diatom assemblages in a lowland stream. Ecological Indicators 64: 31–38.CrossRefGoogle Scholar
  2. Berthon, V., A. Bouchez & F. Rimet, 2011. Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia 673: 259–271.CrossRefGoogle Scholar
  3. Besse-Lototskaya, A., P. F. M. Verdonschot, M. Coste & B. Van de Vijver, 2011. Evaluation of European diatom trophic indices. Ecological Indicators 11: 456–467.CrossRefGoogle Scholar
  4. Blanco, S., C. Cejudo-Figueiras, L. Tudesque, E. Bécares, L. Hoffmann & L. Ector, 2012. Are diatom diversity indices reliable monitoring metrics? Hydrobiologia 695: 199–206.CrossRefGoogle Scholar
  5. Blondel, J., 2003. Guilds or functional groups: does it matter? Oikos 100: 223–231.CrossRefGoogle Scholar
  6. Borics, G., G. Várbíró & J. Padisák, 2013. Disturbance and stress: different meanings in ecological dynamics? Hydrobiologia 711: 1–7.CrossRefGoogle Scholar
  7. Borja, A., A. Miles, A. Occhipinti-Ambrogi & T. Berg, 2009. Current status of macroinvertebrate methods used for assessing the quality of European marine waters: implementing the Water Framework Directive. Hydrobiologia 633: 181–196.CrossRefGoogle Scholar
  8. Busse, S. & P. Snoeijs, 2002. Gradient responses of diatom communities in the Bothnian Bay, northern Baltic Sea. Nova Hedwigia 74: 501–525.CrossRefGoogle Scholar
  9. Busse, S. & P. Snoeijs, 2003. Gradient responses of diatom communities in the Bothnian Sea (northern Baltic Sea), with emphasis on responses to water movement. Phycologia 42: 451–464.CrossRefGoogle Scholar
  10. Carrick, H. J. & R. L. Lowe, 1989. Benthic algal response to N and P enrichment along a pH gradient. Hydrobiologia 179: 119–127.CrossRefGoogle Scholar
  11. Cattaneo, A., 1987. Size distribution in periphyton. Canadian Journal of Fisheries and Aquatic Sciences 44: 2025–2028.CrossRefGoogle Scholar
  12. Centis, B., M. Tolotti & N. Salmaso, 2010. Structure of the diatom community of the River Adige (North-Eastern Italy) along a hydrological gradient. Hydrobiologia 639: 37–42.CrossRefGoogle Scholar
  13. Cochero, J., M. Licursi & N. Gómez, 2015. Changes in the epipelic diatom assemblage in nutrient rich streams due to the variations of simultaneous stressors. Limnologica – Ecology and Management of Inland Waters 51: 15–23.CrossRefGoogle Scholar
  14. Cemagref, 1982. Etude des méthodes biologiques quantitative d’appréciation de la qualité des eaux. Rapport Q.E.Lyon-A.F.Bassin Rhône-Méditerranée-Corse: 218 pp.Google Scholar
  15. Crossetti, L. O. & C. E. de M. Bicudo, 2008. Adaptations in phytoplankton life strategies to imposed change in a shallow urban tropical eutrophic reservoir, Garças Reservoir, over 8 years. Hydrobiologia 614: 91–105.CrossRefGoogle Scholar
  16. Denicola, D. M. & M. Kelly, 2014. Role of periphyton in ecological assessment of lakes. Freshwater Science 33: 619–638.CrossRefGoogle Scholar
  17. Denicola, D. M., E. de Eyto, A. Wemaere & K. Irvine, 2004. Using epilithic algal communities to assess trophic status in Irish lakes. Journal of Phycology 40: 481–495.CrossRefGoogle Scholar
  18. De Queiroz, K., 2007. Species concepts and species delimitation. Systematic Biology 56: 879–886.PubMedCrossRefGoogle Scholar
  19. Dolédec, S. & B. Statzner, 2008. Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freshwater Biology 53: 617–634.CrossRefGoogle Scholar
  20. Dunck, B., J. C. Bortolini, L. Rodrigues, L. C. Rodrigues, S. Jati & S. Train, 2013. Functional diversity and adaptative strategies of planktonic and periphytic algae in isolated tropical floodplain lake. Brazilian Journal of Botany 36: 257–266.CrossRefGoogle Scholar
  21. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 327: 1–72.Google Scholar
  22. Gillett, N., Y. Pan & C. Parker, 2008. Should only live diatoms be used in the bioassessment of small mountain streams? Hydrobiologia 620: 135–147.CrossRefGoogle Scholar
  23. Gómez-Aparicio, L., 2009. The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and ecosystems. Journal of Ecology 97: 1202–1214.CrossRefGoogle Scholar
  24. Gottschalk, S. & M. Kahlert, 2012. Shifts in taxonomical and guild composition of littoral diatom assemblages along environmental gradients. Hydrobiologia 694: 41–56.CrossRefGoogle Scholar
  25. Graham, J. M., P. Arancibia-Avila & L. E. Graham, 1996a. Effects of pH and selected metals on growth of the filamentous green alga Mougeotia under acidic conditions. Limonology and Oceanography 41: 263–270.CrossRefGoogle Scholar
  26. Graham, J. M., P. Arancibia-Avila & L. E. Graham, 1996b. Physiological ecology of a species of the filamentous green alga Mougeotia under acidic conditions: light and temperature effects on photosynthesis and respiration. Limonology and Oceanography 41: 253–262.CrossRefGoogle Scholar
  27. Grime, J. P., 1974. Vegetation classification by reference to strategies. Nature 250: 26–31.CrossRefGoogle Scholar
  28. Grime, J. P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111: 1169–1194.CrossRefGoogle Scholar
  29. Grime, J. P., 1989. The stress debate: symptom of impending synthesis? Biological Journal of the Linnean Society 37: 3–17.CrossRefGoogle Scholar
  30. Hardin, G., 1960. The competitive exclusion principle. Science 131: 1292–1297.PubMedCrossRefGoogle Scholar
  31. Hering, D., A. Borja, J. Carstensen, L. Carvalho, M. Elliott, C. K. Feld, A.-S. Heiskanen, R. K. Johnson, J. Moe, D. Pont, & others, 2010. The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Science of the total Environment 408: 4007–4019Google Scholar
  32. Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). American Journal of Botany 69: 188–213.CrossRefGoogle Scholar
  33. Janson, S., 2002. Cyanobacteria in Symbiosis with Diatoms Cyanobacteria in Symbiosis. Springer, New York: 1–10.Google Scholar
  34. Kahlert, M., R.-L. Albert, E.-L. Anttila, R. Bengtsson, C. Bigler, T. Eskola, V. Gälman, S. Gottschalk, E. Herlitz, A. Jarlman, J. Kasperoviciene, M. Kokociński, H. Luup, J. Miettinen, I. Paunksnyte, K. Piirsoo, I. Quintana, J. Raunio, B. Sandell, H. Simola, I. Sundberg, S. Vilbaste & J. Weckström, 2009. Harmonization is more important than experience—results of the first Nordic-Baltic diatom intercalibration exercise 2007 (stream monitoring). Journal of Applied Phycology 21: 471–482.CrossRefGoogle Scholar
  35. Kahlert, M., M. Kelly, R.-L. Albert, S. F. P. Almeida, T. Bešta, S. Blanco, M. Coste, L. Denys, L. Ector, M. Fránková, D. Hlúbiková, P. Ivanov, B. Kennedy, P. Marvan, A. Mertens, J. Miettinen, J. Picinska-Fałtynowicz, J. Rosebery, E. Tornés, S. Vilbaste & A. Vogel, 2012. Identification versus counting protocols as sources of uncertainty in diatom-based ecological status assessments. Hydrobiologia 695: 109–124.CrossRefGoogle Scholar
  36. Kattge, J., S. Díaz, S. Lavorel, I. C. Prentice, P. Leadley, G. BöNisch, E. Garnier, M. Westoby, P. B. Reich, I. J. Wright, J. H. C. Cornelissen, C. Violle, S. P. Harrison, P. M. Van Bodegom, M. Reichstein, B. J. Enquist, N. A. Soudzilovskaia, D. D. Ackerly, M. Anand, O. Atkin, M. Bahn, T. R. Baker, D. Baldocchi, R. Bekker, C. C. Blanco, B. Blonder, W. J. Bond, R. Bradstock, D. E. Bunker, F. Casanoves, J. Cavender-Bares, J. Q. Chambers, F. S. Chapin Iii, J. Chave, D. Coomes, W. K. Cornwell, J. M. Craine, B. H. Dobrin, L. Duarte, W. Durka, J. Elser, G. Esser, M. Estiarte, W. F. Fagan, J. Fang, F. FernáNdez-MéNdez, A. Fidelis, B. Finegan, O. Flores, H. Ford, D. Frank, G. T. Freschet, N. M. Fyllas, R. V. Gallagher, W. A. Green, A. G. Gutierrez, T. Hickler, S. I. Higgins, J. G. Hodgson, A. Jalili, S. Jansen, C. A. Joly, A. J. Kerkhoff, D. Kirkup, K. Kitajima, M. Kleyer, S. Klotz, J. M. H. Knops, K. Kramer, I. KüHn, H. Kurokawa, D. Laughlin, T. D. Lee, M. Leishman, F. Lens, T. Lenz, S. L. Lewis, J. Lloyd, J. Llusià, F. Louault, S. Ma, M. D. Mahecha, P. Manning, T. Massad, B. E. Medlyn, J. Messier, A. T. Moles, S. C. MüLler, K. Nadrowski, S. Naeem, Ü. Niinemets, S. NöLlert, A. NüSke, R. Ogaya, J. Oleksyn, V. G. Onipchenko, Y. Onoda, J. OrdoñEz, G. Overbeck, W. A. Ozinga, S. PatiñO, S. Paula, J. G. Pausas, J. PeñUelas, O. L. Phillips, V. Pillar, H. Poorter, L. Poorter, P. Poschlod, A. Prinzing, R. Proulx, A. Rammig, S. Reinsch, B. Reu, L. Sack, B. Salgado-Negret, J. Sardans, S. Shiodera, B. Shipley, A. Siefert, E. Sosinski, J.-F. Soussana, E. Swaine, N. Swenson, K. Thompson, P. Thornton, M. Waldram, E. Weiher, M. White, S. White, S. J. Wright, B. Yguel, S. Zaehle, A. E. Zanne & C. Wirth, 2011. TRY – a global database of plant traits: TRY – a global database of plant traits. Global Change Biology 17: 2905–2935.PubMedCentralCrossRefGoogle Scholar
  37. Keck, F., F. Rimet, A. Franc, & A. Bouchez, 2015. Phylogenetic signal in diatom ecology: perspectives for aquatic ecosystems biomonitoring. Ecological Applications. doi: 10.1890/14-1966.
  38. Kelly, M., 2011. The Emperor’s new clothes? A comment on Besse-Lototskaya et al. 2011. Ecological Indicators 11: 1492–1494.CrossRefGoogle Scholar
  39. Kelly, M., 2012. The semiotics of slime: visual representation of phytobenthos as an aid to understanding ecological status. Freshwater Reviews 5: 105–119.CrossRefGoogle Scholar
  40. Kelly, M., 2013. Data rich, information poor? Phytobenthos assessment and the Water Framework Directive. European Journal of Phycology 48: 437–450.CrossRefGoogle Scholar
  41. Kelly, M. G. & B. A. Whitton, 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.CrossRefGoogle Scholar
  42. Kelly, M. G., L. King, R. I. Jones, P. A. Barker & B. J. Jamieson, 2008. Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610: 125–129.CrossRefGoogle Scholar
  43. Kermarrec, L., A. Franc, F. Rimet, P. Chaumeil, J.-M. Frigerio, J.-F. Humbert & A. Bouchez, 2014. A next-generation sequencing approach to river biomonitoring using benthic diatoms. Freshwater Science 33: 349–363.CrossRefGoogle Scholar
  44. King, L., G. Clarke, H. Bennion, M. Kelly & M. Yallop, 2006. Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology 18: 15–25.CrossRefGoogle Scholar
  45. Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.CrossRefGoogle Scholar
  46. Laine, M., S. Morin & J. Tison-Rosebery, 2014. A multicompartment approach – diatoms, macrophytes, benthic macroinvertebrates and fish – to assess the impact of toxic industrial releases on a small French river. PLoS One 9: e102358. doi: 10.1371/journal.pone.0102358.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lange, K., A. Liess, J. J. Piggott, C. R. Townsend & C. D. Matthaei, 2011. Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure: diatom responses to light, nutrients and grazing. Freshwater Biology 56: 264–278.CrossRefGoogle Scholar
  48. Lange, K., C. R. Townsend & C. D. Matthaei, 2016. A trait-based framework for stream algal communities. Ecology and Evolution 6: 23–36.PubMedCrossRefGoogle Scholar
  49. Larras, F., F. Keck, B. Montuelle, F. Rimet & A. Bouchez, 2014. Linking diatom sensitivity to herbicides to phylogeny: a step forward for biomonitoring? Environmental Science & Technology 48: 1921–1930.CrossRefGoogle Scholar
  50. Lavoie, I., S. Campeau, M.-A. Fallu & P. J. Dillon, 2006. Diatoms and biomonitoring: should cell size be accounted for? Hydrobiologia 573: 1–16.CrossRefGoogle Scholar
  51. Lavoie, I., J. Lento & A. Morin, 2010. Inadequacy of size distributions of stream benthic diatoms for environmental monitoring. Journal of the North American Benthological Society 29: 586–601.CrossRefGoogle Scholar
  52. Law, R. J., J. A. Elliott & S. J. Thackeray, 2014. Do functional or morphological classifications explain stream phytobenthic community assemblages? Diatom Research 29: 309–324.CrossRefGoogle Scholar
  53. Leira, M., G. Chen, C. Dalton, K. Irvine & D. Taylor, 2009. Patterns in freshwater diatom taxonomic distinctness along an eutrophication gradient. Freshwater Biology 54: 1–14.CrossRefGoogle Scholar
  54. Leira, M., M. L. Filippi & M. Cantonati, 2015. Diatom community response to extreme water-level fluctuations in two Alpine lakes: a core case study. Journal of Paleolimnology 53: 289–307.CrossRefGoogle Scholar
  55. Lengyel, E., A. W. Kovács, J. Padisák & C. Stenger-Kovács, 2015a. Photosynthetic characteristics of the benthic diatom species Nitzschia frustulum (Kützing) Grunow isolated from a soda pan along temperature-, sulfate- and chloride gradients. Aquatic Ecology 49: 401–416.CrossRefGoogle Scholar
  56. Lengyel, E., J. Padisák & C. Stenger-Kovács, 2015b. Establishment of equilibrium states and effect of disturbances on benthic diatom assemblages of the Torna-stream, Hungary. Hydrobiologia 750: 43–56.CrossRefGoogle Scholar
  57. Linneaus, C., 1758. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentius Salvius, Stockholm.Google Scholar
  58. Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.CrossRefGoogle Scholar
  59. Logez, M., P. Bady, A. Melcher & D. Pont, 2013. A continental-scale analysis of fish assemblage functional structure in European rivers. Ecography 36: 80–91.CrossRefGoogle Scholar
  60. Mackay, A. W., T. Davidson, P. Wolski, S. Woodward, R. Mazebedi, W. R. L. Masamba & M. Todd, 2012. Diatom sensitivity to hydrological and nutrient variability in a subtropical, flood-pulse wetland. Ecohydrology 5: 491–502.CrossRefGoogle Scholar
  61. Mann, D. G., 1999. The species concept in diatoms. Phycologia 38: 437–495.CrossRefGoogle Scholar
  62. Mann, D. G. & P. Vanormelingen, 2013. An inordinate fondness? The number, distributions, and origins of diatom species. Journal of Eukaryotic Microbiology 60: 414–420.PubMedCrossRefGoogle Scholar
  63. Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica acta 1: 493–509.Google Scholar
  64. Morin, A., N. Bourassa & A. Cattaneo, 2001. Use of size spectra and empirical models to evaluate trophic relationships in streams. Limnology and Oceanography 46: 935–940.CrossRefGoogle Scholar
  65. Neilan, B. A., D. Jacobs & A. E. Goodman, 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Applied and Environmental Microbiology 61: 3875–3883.PubMedPubMedCentralGoogle Scholar
  66. Neustupa, J., J. Veselá & J. Št’astný, 2013. Differential cell size structure of desmids and diatoms in the phytobenthos of peatlands. Hydrobiologia 709: 159–171.CrossRefGoogle Scholar
  67. Orfanidis, S., P. Panayotidis & N. Stamatis, 2003. An insight to the ecological evaluation index (EEI). Ecological Indicators 3: 27–33.CrossRefGoogle Scholar
  68. Padisák, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249: 135–156.CrossRefGoogle Scholar
  69. Padisák, J., 2003. Phytoplankton. In O’Sullivan, P. E. & C. S. Reynolds (eds), The lakes handbook, Vol. 1. Blackwell Science Ltd, Hoboken: 251–308.CrossRefGoogle Scholar
  70. Padisák, J., G. Borics, I. Grigorszky & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553: 1–14.CrossRefGoogle Scholar
  71. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  72. Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.CrossRefGoogle Scholar
  73. Pianka, E. R., 1970. On r-and K-selection. American Naturalist 104: 592–597.CrossRefGoogle Scholar
  74. Pringle, C. M., 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905.CrossRefGoogle Scholar
  75. Prygiel, J. & M. Coste, 1998. Mise au point de l’Indice Biologique Diatomée, un indice diatomique pratique applicable au réseau hydrographique français. L’Eau, l’industrie, les nuisances 211: 40–45.Google Scholar
  76. Raunkiaer, C., 1934. The Life Forms of Plants and Statistical Plant Geography. The Clarendon Press, Oxford.Google Scholar
  77. Reyjol, Y., C. Argillier, W. Bonne, A. Borja, A. D. Buijse, A. C. Cardoso, M. Daufresne, M. Kernan, M. T. Ferreira, S. Poikane, N. Prat, A.-L. Solheim, S. Stroffek, P. Usseglio-Polatera, B. Villeneuve & W. van de Bund, 2014. Assessing the ecological status in the context of the European Water Framework Directive: where do we go now? Science of The Total Environment 497–498: 332–344.PubMedCrossRefGoogle Scholar
  78. Reynolds, C. S., 1988. Functional Morphology and the Adaptive Strategies of Freshwater Phytoplankton. Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 388–433.Google Scholar
  79. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, New York.CrossRefGoogle Scholar
  80. Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.CrossRefGoogle Scholar
  81. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  82. Rimet, F. & A. Bouchez, 2012a. Biomonitoring river diatoms: implications of taxonomic resolution. Ecological Indicators 15: 92–99.CrossRefGoogle Scholar
  83. Rimet, F. & A. Bouchez, 2012b. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowledge and Management of Aquatic Ecosystems 406: 1–14.  doi: 10.1051/kmae/2012018 CrossRefGoogle Scholar
  84. Rimet, F., J. Gomà, J. Cambra, E. Bertuzzi, M. Cantonati, C. Cappelletti, F. Ciutti, A. Cordonier, M. Coste, F. Delmas, J. Tison, L. Tudesque, H. Vidal & L. Ector, 2007. Benthic diatoms in Western European streams with altitudes above 800 M: characterisation of the main assemblages and correspondence with ecoregions. Diatom Research 22: 147–188.CrossRefGoogle Scholar
  85. Rimet, F., L. Ector, H.-M. Cauchie & L. Hoffmann, 2009. Changes in diatom-dominated biofilms during simulated improvements in water quality: implications for diatom-based monitoring in rivers. European Journal of Phycology 44: 567–577.CrossRefGoogle Scholar
  86. Rimet, F., A. Bouchez & B. Montuelle, 2015. Benthic diatoms and phytoplankton to assess nutrients in a large lake: complementarity of their use in Lake Geneva (France–Switzerland). Ecological Indicators 53: 231–239.CrossRefGoogle Scholar
  87. Rott, E., G. Hofmann, K. Pall, P. Pfister, & E. Pipp, 1997. Indikationslisten für Aufwuchsalgen, Teil 1: Saprobielle Indikation (Indication lists for periphytic algae. Part 1: Saprobic indication). Bundesministerium für Land-und Forstwirtschaft (Federal Ministry of Agriculture and Forestry), Wien.Google Scholar
  88. Rott, E., E. Pipp, P. Pfister, H. Van Dam, K. Ortler, K. Pall, & N. Binder, 1999. Indikationslisten für Aufwuchsalgen in österreichischen Fliessgewässern. Teil 2: Trophie-indikation sowie geochemische Präferenz; taxonomische und toxikologische Anmerkungen. Bundesministerium für Land-und Forstwirtschaft, Wasserwirtschaftskataster, Wien.Google Scholar
  89. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms: Biology & Morphology of the Genera. Cambridge University Press, Cambridge.Google Scholar
  90. Rumeau, A., & M. Coste, 1988. Initiation à la systématique des diatomées d’eau douce. Pour l’utilisation pratique d’un indice diatomique générique. Bulletin Français de la Pêche et de la Pisciculture 309: 1–69.Google Scholar
  91. Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  92. Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.CrossRefGoogle Scholar
  93. Schaumburg, J., C. Schranz, J. Foerster, A. Gutowski, G. Hofmann, P. Meilinger, S. Schneider & U. Schmedtje, 2004. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the water framework directive. Limnologica – Ecology and Management of Inland Waters 34: 283–301.CrossRefGoogle Scholar
  94. Schleuter, D., M. Daufresne, F. Massol & C. Argillier, 2010. A user’s guide to functional diversity indices. Ecological Monographs 80: 469–484.CrossRefGoogle Scholar
  95. Schneider, S. & E.-A. Lindstrøm, 2009. Bioindication in Norwegian rivers using non-diatomaceous benthic algae: the acidification index periphyton (AIP). Ecological Indicators 9: 1206–1211.CrossRefGoogle Scholar
  96. Schneider, S. C. & E.-A. Lindstrøm, 2011. The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 665: 143–155.CrossRefGoogle Scholar
  97. Schneider, S. C., A. E. Lawniczak, J. Picińska-Faltynowicz & K. Szoszkiewicz, 2012. Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland. Limnologica – Ecology and Management of Inland Waters 42: 204–211.CrossRefGoogle Scholar
  98. Snoeijs, P., S. Busse & M. Potapova, 2002. The importance of diatom cell size in community analysis 1. Journal of Phycology 38: 265–281.CrossRefGoogle Scholar
  99. Stancheva, R., R. G. Sheath, B. A. Read, K. D. McArthur, C. Schroepfer, J. P. Kociolek & A. E. Fetscher, 2013. Nitrogen-fixing cyanobacteria (free-living and diatom endosymbionts): their use in southern California stream bioassessment. Hydrobiologia 720: 111–127.CrossRefGoogle Scholar
  100. Stenger-Kovács, C., E. Lengyel, L. O. Crossetti, V. Üveges & J. Padisák, 2013a. Diatom ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecological Indicators 24: 138–147.CrossRefGoogle Scholar
  101. Stenger-Kovács, C., L. Tóth, F. Tóth, É. Hajnal & J. Padisák, 2013b. Stream order-dependent diversity metrics of epilithic diatom assemblages. Hydrobiologia 721: 67–75.CrossRefGoogle Scholar
  102. Stenger-Kovács, C., E. Lengyel, K. Buczkó, F. Tóth, L. Crossetti, A. Pellinger, Z. Zámbóné Doma & J. Padisák, 2014. Vanishing world: alkaline, saline lakes in Central Europe and their diatom assemblages. Inland Waters 4: 383–396.CrossRefGoogle Scholar
  103. Stenger-Kovács, C., É. Hajnal, E. Lengyel, K. Buczkó & J. Padisák, 2016. A test of traditional diversity measures and taxonomic distinctness indices on benthic diatoms of soda pans in the Carpathian basin. Ecological Indicators 64: 1–8.CrossRefGoogle Scholar
  104. Stevenson, J., 2014. Ecological assessments with algae: a review and synthesis. Journal of Phycology 50: 437–461.PubMedCrossRefGoogle Scholar
  105. Stevenson, R. J., & L. L. Bahls, 2002. Periphyton protocols Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. EPA: 1–23,
  106. Straile, D., M. C. Jochimsen & R. Kümmerlin, 2013. The use of long-term monitoring data for studies of planktonic diversity: a cautionary tale from two Swiss lakes. Freshwater Biology 58: 1292–1301.CrossRefGoogle Scholar
  107. Svensson, F., J. Norberg & P. Snoeijs, 2014. Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change. PLoS One 9: e109993.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tall, L., L. Cloutier & A. Cattaneo, 2006. Grazer-diatom size relationships in an epiphytic community. Limnology and Oceanography 51: 1211–1216.CrossRefGoogle Scholar
  109. Tang, T., S. Q. Niu & D. Dudgeon, 2013. Responses of epibenthic algal assemblages to water abstraction in Hong Kong streams. Hydrobiologia 703: 225–237.CrossRefGoogle Scholar
  110. Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205.CrossRefGoogle Scholar
  111. Vilar, A. G., J. A. Vonk, S. Bichebois, H. van Dam, W. Admiraal & H. G. van der Geest, 2015. Suspended organic particles drive the development of attached algal communities in degraded peatlands. Hydrobiologia 744: 211–221.CrossRefGoogle Scholar
  112. Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.CrossRefGoogle Scholar
  113. Virtanen, L. K., P. Kongas, S. Aitto-Oja & J. Soininen, 2011. Is temporal occurrence of diatoms related to species traits, local abundance, and regional distribution? Journal of Phycology 47: 1445–1453.PubMedCrossRefGoogle Scholar
  114. von Humboldt, A., 1806. Ideen zu einer Physiognomik der Gewächse. Cotta, Tübingen.Google Scholar
  115. Wells, E., M. Wilkinson, P. Wood & C. Scanlan, 2007. The use of macroalgal species richness and composition on intertidal rocky seashores in the assessment of ecological quality under the European Water Framework Directive. Marine Pollution Bulletin 55: 151–161.PubMedCrossRefGoogle Scholar
  116. Wunsam, S., A. Cattaneo & N. Bourassa, 2002. Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Québec, Canada). Freshwater Biology 47: 325–340.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kálmán Tapolczai
    • 1
    Email author
  • Agnès Bouchez
    • 1
  • Csilla Stenger-Kovács
    • 2
  • Judit Padisák
    • 2
    • 3
  • Frédéric Rimet
    • 1
  1. 1.UMR CARRTEL, INRAThonon-les-BainsFrance
  2. 2.Department of LimnologyUniversity of PannoniaVeszprémHungary
  3. 3.MTA-PE Limnoecology Research GroupVeszprémHungary

Personalised recommendations