Hydrobiologia

, Volume 789, Issue 1, pp 45–57 | Cite as

Modeling of regional- and local-scale distribution of the genus Montrichardia Crueg. (Araceae)

  • Aline Lopes
  • Florian Wittmann
  • Jochen Schöngart
  • John Ethan Householder
  • Maria Teresa Fernandez Piedade
ADAPTA

Abstract

Knowledge of the environmental correlates of species’ distributions is essential for understanding population dynamics, responses to environmental changes, biodiversity patterns, and the impacts of conservation plans. Here we examine how environment controls the distribution of the neotropical genus Montrichardia at regional and local spatial scales using species distribution models (SDMs) and logistic regression, respectively. Montrichardia is a genus of aquatic macrophytes with two species, Montrichardia linifera and Montrichardia arborescens, and is often an important component of flooded habitats. We find that for each species, altitude, precipitation and temperature of the driest month figure in the best performing SDMs as the most important factors controlling large-scale distributions, suggesting that the range limits of both species are climatically constrained by plant water-energy balance and cold intolerance. At small spatial scales, logistic regression models indicate the species partition types of aquatic habitat along local gradients of water pH, conductivity, and water transparency. In summary, a hierarchy of factors may control Montrichardia distribution from large to small spatial scales. While at large spatial scales, evolutionarily conserved climatic niches may control the range limits of the genus, at small spatial scales niche differentiation allows individual species to grow in environmentally distinct aquatic habitats.

Keywords

Wetlands Aquatic macrophytes Species distribution modeling Maxent Amazon 

Supplementary material

10750_2016_2721_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)

References

  1. Adams, M. P., M. I. Saunders, P. S. Maxwell, D. Tuazon, C. M. Roelfsema, D. P. Callaghan, J. Leon, R. G. Alistair & K. R. O’Brien, 2015. Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Marine and Freshwater Ecosystems, Aquatic Conservation. doi:10.1002/aqc.2573.Google Scholar
  2. Barendregt, A. & A. M. F. Bio, 2003. Relevant variables to predict macrophytes communities in running waters. Ecological Modelling 160: 205–217.CrossRefGoogle Scholar
  3. Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73(1): 1–14.CrossRefGoogle Scholar
  4. Brown, D. G., 1994. Predicting vegetation types at tree line using topography and biophysical disturbance variables. Journal of Vegetation Science 5: 641–656.CrossRefGoogle Scholar
  5. Candolle, A., 1855. Géographie botanique. Paris.Google Scholar
  6. Chambers, P. A., P. Lacoul, K. J. Murphy & S. M. Thomaz, 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.CrossRefGoogle Scholar
  7. Darwin, C., 1859. The Origin of Species, by Means of Natural Selection. Murray, London.Google Scholar
  8. Dias, R. L., 2009. Softwear Comunidata 1.6.Google Scholar
  9. Efron, B., 1981. Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68(3): 589–599.CrossRefGoogle Scholar
  10. Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. Hijmans, F. R. Huettmann, J. Leathwick, A. Lehmann, J. G. Li, L. A. Lohmann, B. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. M. Overton, A. J. Townsend Peterson, S. Phillips, K. Richardson, R. E. Scachetti-Pereira, R. Schapire, J. Soberón, S. S. Williams, E. Wisz & N. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.CrossRefGoogle Scholar
  11. Ferreira, F. A. R. P., G. Mormul, A. Pott Catian & G. Pedralli, 2015. Distribution pattern of neotropical aquatic macrophytes in permanent lakes at a Ramsar site. Brazilian Journal of Botany 38(1): 131–139.CrossRefGoogle Scholar
  12. Figueroa, J. M. T., M. J. López-Rodríguez, S. Fenoglio, P. Sánchez-Castillo & R. Fochetti, 2013. Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719(1): 137–186.CrossRefGoogle Scholar
  13. Fine, P., D. C. Daly, G. Villa Muñoz, I. Mesones & K. M. Cameron, 2005. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the Western Amazon. Evolution 59(7): 1464–1478.PubMedGoogle Scholar
  14. Freitas, C. T., G. H. Shepard & M. T. F. Piedade, 2015. The floating forest: traditional knowledge and use of matupá vegetation islands by riverine peoples of the Central Amazon. Plos One 10(4): e0122542.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Furch, K., 2000. Chemistry and bioelement inventory of contrasting Amazonian forest soils. In Junk, W. J., J. J. Ohly, M. T. F. Piedade & M. G. M. Soares (eds), The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers, Leiden: 109–128.Google Scholar
  16. Furch, K. & W. J. Junk, 1997. Physicochemical conditions in the floodplains. Ecological Studies 126: 69–108.CrossRefGoogle Scholar
  17. Gentry, A. H., 1988. Changes in plant community diversity and floristic composition on environmental and geographic gradients. Annals of the Missouri Botanical Garden 75(1): 1–34.CrossRefGoogle Scholar
  18. Good, R., 1953. The geography of the flowering plants. Longmans Green, London.Google Scholar
  19. Guisan, A. & W. Thuiller, 2005. Predicting species distribution: offering more than simple habitat models. Ecological Letters 8: 993–1009.CrossRefGoogle Scholar
  20. Guppy, H., 1906. Observations of a naturalist in the Pacific between 1826 and 1899. II Plant dispersal. Macmillan Publishers Ltd, London.Google Scholar
  21. Householder, E., F. Wittmann, M. Tobler & J. Janovec, 2015. Montane bias in lowland Amazonian peatlands: plant assembly on heterogenous landscapes and potential significance to palynological inference. Palaeogeography, Palaeoclimatology, Palaeoecology 423: 138–148.CrossRefGoogle Scholar
  22. IPCC, 2013. Climate Change 2013: the physical science basis. In Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. http://www.climatechange2013.org/images/report/WG1AR5_TS_FINAL.pdf.
  23. Junk, W. J., 1997. The Central Amazon Floodplain: Ecology of a Pulsing System. Ecological Studies, Vol. 126. Springer-Verlag, Berlin: 525.Google Scholar
  24. Junk, W. J. & M. T. F. Piedade, 1997. Plant life in the floodplain with special reference to herbaceous plants. In Junk, W. J. (ed.), The Central Amazon Floodplain, Vol. 126. Springer-Verlag, New York: 147–181.CrossRefGoogle Scholar
  25. Junk, W. J., M. T. F. Piedade, J. Schöngart, M. Cohn-Haft, J. M. Adeney & F. Wittmann, 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31: 623–640.CrossRefGoogle Scholar
  26. Junk, W. J., M. T. F. Piedade, J. Schöngart & F. Wittmann, 2012. A classification of major natural habitats of Amazonian white water river floodplains (várzeas). Wetlands Ecology and Management 20(6): 461–475.CrossRefGoogle Scholar
  27. Junk, W. J., F. Wittmann, J. Schöngart & M. T. F. Piedade, 2015. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecology and Management 23(4): 677–693.CrossRefGoogle Scholar
  28. Kumar, S. & T. J. Stohlgren, 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and The Natural Environment 1(4): 094–098.Google Scholar
  29. Lehtonen, S., 2009. On the origin of Echinodorus grandiflorus (Alismataceae) in Florida (“E. floridanus”), and its estimated potential as an invasive species. Hydrobiologia 635(1): 107–112.CrossRefGoogle Scholar
  30. Loo, S. E., R. Mac Nally, D. J. O’Dowd, J. R. Thomson & P. S. Lake, 2009. Multiple scale analysis of factors influencing the distribution of an invasive aquatic grass. Biological invasions 11(8): 1903–1912.CrossRefGoogle Scholar
  31. Lopes, A. & M. T. F. Piedade, 2014. Experimental study on the survival of the water hyacinth (Eichhornia crassipes (Mart.) Solms-Pontederiaceae) under different oil doses and times of exposure. Environmental Science and Pollution Research 21(23): 13503–13511.CrossRefPubMedGoogle Scholar
  32. Lopes, A., J. D. A. Paula, S. F. Mardegan, N. Hamada & M. T. F. Piedade, 2011. Influência do hábitat na estrutura da comunidade de macroinvertebrados aquáticos associados às raízes de Eichhornia crassipes na região do Lago Catalão, Amazonas, Brasil. Acta Amazonica 41: 493–502.CrossRefGoogle Scholar
  33. Lopes, A., F. Wittmann, J. Schöngart & M. T. F. Piedade, 2014. Herbáceas aquáticas em seis igapós na Amazônia Central: composição e diversidade de gêneros. Revista Geográfica Academica 8(1): 5–17.CrossRefGoogle Scholar
  34. Lopes, A., A. B. Ferreira, P. O. Pantoja, P. Parolin & M. T. F. Piedade, 2015. Combined effect of elevated CO2 level and temperature on germination and initial growth of Montrichardia arborescens (L.) Schott (Araceae): a microcosm experiment. Hydrobiologia. doi:10.1007/s10750-015-2598-1.Google Scholar
  35. Lopes, A., P. Parolin & M. T. F. Piedade, 2016. Morphological and physiological traits of aquatic macrophytes respond to water chemistry in the Amazon Basin: an example of the genus Montrichardia Crueg (Araceae). Hydrobiologia 766(1): 1–15.CrossRefGoogle Scholar
  36. Mayo, S. J., J. Bogner & P. C. Boyce, 1997. The Genera of Araceae. RBGKew Press, London.Google Scholar
  37. Meave, J., M. Kellman, A. MacDougall & J. Rosales, 1991. Riparian habitats as tropical forest refugia. Global Ecology and Biogeography Letters 1: 69–76.CrossRefGoogle Scholar
  38. Merow, C., A. M. Latimer, A. M. Wilson, S. M. McMahon, A. G. Rebelo & J. A. Silander, 2014. On using integral projection models to generate demographically driven predictions of species’ distributions: development and validation using sparse data. Ecography 37(12): 1167–1183.CrossRefGoogle Scholar
  39. Neiff, J. J. & A. S. G. Poi de Neiff, 2003. Connectivity processes as a basis for the management of aquatic plants. In Thomaz, S. & L. M. Bini (eds), Ecologia e Manejo de Macrófitas Aquáticas. Nupélia – Maringá. Eduem, Maringá: 39–58.Google Scholar
  40. Pearson, R. G., C. J. Raxworthy, M. Nakamura & A. T. Peterson, 2007. Predicting species’ distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102–117.CrossRefGoogle Scholar
  41. Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.CrossRefGoogle Scholar
  42. Piedade, M. T. F., W. J. Junk, S. A. D’Ângelo, F. Wittmann, J. Schöngart, K. M. D. N. Barbosa & A. Lopes, 2010. Aquatic herbaceous plants of the Amazon floodplains: state of the art and research needed. Acta Limnologica Brasiliensia 22(2): 165–178.CrossRefGoogle Scholar
  43. Richey, J. E. E., J. I. Hedges, A. H. Devol, P. D. Quay, R. Victoria, L. Martinelli & B. R. Forsberg, 1990. Biogeochemistry of carbon in the Amazon River. Limnol. Oceanogr 35(2): 352–371.CrossRefGoogle Scholar
  44. Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23(3): 137–154.CrossRefGoogle Scholar
  45. Schöngart, J., M. T. F. Piedade, F. Wittmann, W. J. Junk & M. Worbes, 2005. Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145: 454–461.CrossRefPubMedGoogle Scholar
  46. Sculthorpe, C. D., 1985. The Biology of Aquatic Vascular Plants. Edward Arnold, London: 610.Google Scholar
  47. Short, F. T. & H. A. Neckles, 1999. The effects of global climate change on seagrasses. Aquatic Botany 63(3): 169–196.CrossRefGoogle Scholar
  48. Silvertown, J., M. Dodd, D. Gowing & O. Mountford, 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400: 61–63.CrossRefGoogle Scholar
  49. Sioli, H., 1968. Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana 3: 267–277.Google Scholar
  50. Weddell, H., 1872. Sur les Podostémacées en général, et leur distribution géographique en particulier. Bulletin de la Société botanique de France 19: 50–57.CrossRefGoogle Scholar
  51. Wiens, J. J., 2011. The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society of London B: Biological Sciences 366(1576): 2336–2350.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wittmann, F., W. J. Junk & M. T. Piedade, 2004. The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecology and Management 196: 199–212.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Aline Lopes
    • 1
  • Florian Wittmann
    • 2
  • Jochen Schöngart
    • 3
  • John Ethan Householder
    • 1
    • 4
  • Maria Teresa Fernandez Piedade
    • 3
  1. 1.Graduate Program in Ecology, Instituto Nacional de Pesquisas da Amazônia - INPA Grupo de EcologiaMonitoramento e Uso Sustentável de Áreas Úmidas – MAUAManausBrazil
  2. 2.Biogeochemistry DepartmentMax Planck Institute ChemistryMainzGermany
  3. 3.CDAM/Grupo MAUA “Ecologia, Monitoramento e Uso Sustentável de Áreas Úmidas”Instituto Nacional de Pesquisas da AmazôniaManausBrazil
  4. 4.Botanical Research Institute of TexasFort WorthUSA

Personalised recommendations