, Volume 789, Issue 1, pp 31–44 | Cite as

Effects of climate change on leaf breakdown by microorganisms and the shredder Phylloicus elektoros (Trichoptera: Calamoceratidae)

  • Renato T. MartinsEmail author
  • Adriano S. Melo
  • José F. GonçalvesJr.
  • Claudimir M. Campos
  • Neusa Hamada


Climate change may affect species diversity and, consequently, ecological processes such as leaf decomposition. We evaluated the effects of increased temperature and carbon dioxide (CO2) on fungal biomass, leaf breakdown, and on survival and growth of the shredder Phylloicus elektoros. We hypothesized that climatic changes would result in lower survival and growth of shredders and lower leaf consumption by these organisms. On the other hand, we predicted an increase in fungal biomass in response to climatic changes. We conducted an experiment in Manaus, Brazil, using four microcosms that simulate real-time air temperature and CO2 (control chamber), as well as three other chambers subjected to fixed increases in temperature and CO2 as compared to the control chamber. The “extreme” condition represented an increase of ~4.5°C in temperature and ~870 ppm in CO2 in relation to the control chamber. Total and shredder leaf-breakdown rates, fungal biomass, and shredder survival rates were significantly lower in warmer and CO2 concentrated atmospheres. Shredder growth rate and leaf breakdown by microorganisms were similar among all climatic conditions. With climatic changes, we found an increase in the relative importance of microorganisms on leaf-breakdown rates as compared to shredders. Thus, lower leaf breakdown and a change in the main decomposer due to future climatic conditions may result in major changes in the pathways of organic matter processing and, consequently, in aquatic food webs.


Aquatic insects Carbon dioxide and temperature increase Shredder consumption rate Fungal biomass Growth rate Survival rate 



We thank Dr. Adalberto L. Val for microcosm use, Dr. Ana M.O. Pes for Phylloicus elektoros identification, Dr. Sérgio Nunomura for lyophilizer use, Dr. Manuel A.S. Graça for suggestions during data analysis, and Fernanda Dragan and Jéssica Oliveira for help during the experiment. We also thank Fernanda Dragan and collaborators who are finalizing a detailed description of the microcosms. ASM, JFGJr, and NH received research fellowships (procs. 307479/2011-0, 302957/2014-6 and 306328/2010-0, respectively) from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RTM received a fellowship from Programa de Apoio à Fixação de Doutores no Amazonas—FIXAM/AM. CT-Amazônia/CNPq (Proc. 575875/2008-9), Pronex/CNPq/Fapeam—Aquatic insects, CT-Hidro/Climatic Changes/Water Resources/CNPq (Proc. 403949/2013-0) and INCT/ADAPTA (CNPq/FAPEAM)—Amazon projects supported the invertebrate sample collection, laboratory analyses, and microcosm experiments.

Supplementary material

10750_2016_2689_MOESM1_ESM.pdf (496 kb)
Supplementary material 1 (PDF 496 kb). Fig. S1—Flow diagram of the experimental design. We considered total leaf breakdown as sum of microbial leaf breakdown and shredder leaf breakdown. The values of air temperature and CO2 indicated are the averages registered during the experiment. Chambers were subjected to the following conditions: Control: real-time current conditions of air temperature and CO2 from Manaus (Amazonas, Brazil); Light: increases of ~1.5°C in temperature and ~220 ppm CO2 concentration in relation to the control; Intermediate: increases of ~3.0°C in temperature and ~420 ppm CO2 concentration in relation to the control; Extreme: increase of ~4.5°C in temperature and ~870 ppm CO2 concentration in relation to the control


  1. Abelho, M., 2001. From litterfall to breakdown in streams: a review. The Scientific World 1: 656–680.CrossRefGoogle Scholar
  2. Abelho, M., 2009. ATP and ergosterol as indicators of fungal biomass during leaf decomposition in streams: a comparative study. International Review of Hydrobiology 94: 3–15.CrossRefGoogle Scholar
  3. Adams, J. A., N. C. Tuchman & P. A. Moore, 2003. Atmospheric CO2 enrichment alters leaf detritus: impacts on foraging decisions of crayfish (Orconectes virilis). Journal of the North American Benthological Society 22: 410–422.CrossRefGoogle Scholar
  4. Albariño, R. J. & E. G. Balseiro, 2001. Food Quality, Larval consumption, and growth of Klapopteryx kuscheli (Plecoptera: Austroperlidae) from a South Andes stream. Journal of Freshwater Ecology 16: 517–526.CrossRefGoogle Scholar
  5. Altman, D. G. & J. M. Bland, 1998. Time to event (survival) data. British Medical Journal 317: 468–469.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anderson, N. H. & K. W. Cummins, 1979. Influences of diet on the life histories of aquatic insects. Journal of the Fisheries Research Board of Canada 36: 335–342.CrossRefGoogle Scholar
  7. Anderson, N. H. & E. Grafius, 1975. Utilization and processing of allochthonous material by stream Trichoptera. Verhandlungen des Internationalen Verein Limnologie 19: 3083–3088.Google Scholar
  8. Ardón, N., L. A. Stallcup & C. M. Pringle, 2006. Does leaf quality mediate the stimulation of leaf breakdown by phosphorus in Neotropical streams? Freshwater Biology 51: 618–633.CrossRefGoogle Scholar
  9. Atkinson, D. & R. M. Sibly, 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution 12: 235–239.CrossRefPubMedGoogle Scholar
  10. Bärlocher, F. & M. A. S. Graça, 2005. Total phenolics. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 97–100.CrossRefGoogle Scholar
  11. Bastian, M., L. Boyero, B. R. Jackes & R. G. Pearson, 2007. Leaf litter diversity and shredder preferences in an Australian tropical rain-forest stream. Journal of Tropical Ecology 23: 219–229.CrossRefGoogle Scholar
  12. Becker, B., M. S. Moretti & M. Callisto, 2009. Length–dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: Calamoceratidae). Aquatic Insects 31: 227–234.CrossRefGoogle Scholar
  13. Bisutti, I., I. Hilke & M. Raessler, 2004. Determination of total organic carbon – an overview of current methods. Trends in Analytical Chemistry 23: 716–726.CrossRefGoogle Scholar
  14. Bland, J. M., 2004. The logrank test. British Medical Journal 328: 1073.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bland, J. M. & D. G. Altman, 1998. Survival probabilities (the Kaplan–Meier method). British Medical Journal 317: 1572.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Boyero, L., R. G. Pearson, M. O. Gessner, L. A. Barmuta, V. Ferreira, M. A. S. Graça, D. Dudgeon, A. J. Boulton, M. Callisto, E. Chauvet, J. E. Helson, A. Bruder, R. J. Albariño, C. M. Yule, M. Arunachalam, J. N. Davies, R. Figueroa, A. S. Flecker, A. Ramírez, R. G. Death, T. Iwata, J. M. Mathooko, C. Mathuriau, J. F. Gonçalves Jr, M. S. Moretti, T. Jinggut, S. Lamothe, C. M’Erimba, L. Ratnarajah, M. H. Schindler, J. Castela, L. M. Buria, A. Cornejo, V. D. Villanueva & D. C. West, 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters 14: 289–294.CrossRefPubMedGoogle Scholar
  17. Boyero, L., B. J. Cardinale, M. Bastian & R. G. Pearson, 2014. Biotic versus abiotic control of decomposition: a comparison of the effects of simulated extinctions and changes in temperature. PLoS One 9: e87426.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Canadell, J. G., C. Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton & G. Marland, 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences 104: 18866–18870.CrossRefGoogle Scholar
  19. Canhoto, C. & M. A. S. Graça, 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshwater Biology 34: 209–214.CrossRefGoogle Scholar
  20. Carvalho, E. M. & M. A. S. Graça, 2007. A laboratory study on feeding plasticity of the shredder Sericostoma vittatum Rambur (Sericostomatidae). Hydrobiologia 575: 353–359.CrossRefGoogle Scholar
  21. Chauvet, E. & K. Suberkropp, 1998. Temperature and sporulation of aquatic hyphomycetes. Applied and Environmental Microbiology 64: 1522–1525.PubMedPubMedCentralGoogle Scholar
  22. Coviella, C. E. & J. T. Trumble, 1999. Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Conservation Biology 13: 700–712.CrossRefGoogle Scholar
  23. Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.CrossRefGoogle Scholar
  24. Cummins, K. W., R. C. Petersen, F. O. Howard, J. C. Wuycheck & V. I. Holt, 1973. The utilization of leaf litter by stream detritivores. Ecology 54: 336–345.CrossRefGoogle Scholar
  25. Davies, J. N. & A. J. Boulton, 2009. Great house, poor food: effects of exotic leaf litter on shredder densities and caddisfly growth in 6 subtropical Australian streams. Journal of the North American Benthological Society 28: 491–503.CrossRefGoogle Scholar
  26. Feely, R. A., S. C. Doney & S. R. Cooley, 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22: 36–47.CrossRefGoogle Scholar
  27. Fernandes, I., B. Uzun, C. Pascoal & F. Cássio, 2009. Responses of aquatic fungal communities on leaf litter to temperature-change events. International Review of Hydrobiology 94: 410–418.CrossRefGoogle Scholar
  28. Ferreira, V. & E. Chauvet, 2011a. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 167: 279–291.CrossRefPubMedGoogle Scholar
  29. Ferreira, V. & E. Chauvet, 2011b. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17: 551–564.CrossRefGoogle Scholar
  30. Ferreira, V., A. Gonçalves, D. L. Godbold & C. Canhoto, 2010. Effect of increased atmospheric CO2 on the performance of an aquatic detritivore through changes in water temperature and litter quality. Global Change Biology 16: 3284–3296.CrossRefGoogle Scholar
  31. Ferreira, V., A. C. Encalada & M. A. S. Graça, 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science 31: 945–962.CrossRefGoogle Scholar
  32. Foucreau, N., S. Puijalon, F. Hervant & C. Piscart, 2013. Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshwater Biology 58: 1672–1681.CrossRefGoogle Scholar
  33. Friberg, N. & D. Jacobsen, 1994. Feeding plasticity of two detritivore-shredders. Freshwater Biology 32: 133–142.CrossRefGoogle Scholar
  34. Friberg, N. & D. Jacobsen, 1999. Variation in growth of the detritivore-shredder Sericostoma personatum (Trichoptera). Freshwater Biology 42: 625–635.CrossRefGoogle Scholar
  35. Geraldes, P., C. Pascoal & F. Cássio, 2012. Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology 5: 734–740.CrossRefGoogle Scholar
  36. Gessner, M. O., 2005. Proximate lignin and cellulose. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 115–120.CrossRefGoogle Scholar
  37. Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology 75: 1807–1817.CrossRefGoogle Scholar
  38. Giberson, D. J. & D. M. Rosenberg, 1992. Effects of temperature, food quantity, and nymphal rearing density on life-history traits of a northern population of Hexagenia (Ephemeroptera: Ephemeridae). Journal of the North American Benthological Society 11: 181–193.CrossRefGoogle Scholar
  39. Gonçalves, A. L., M. A. S. Graça & C. Canhoto, 2013. The effect of temperature on leaf decomposition and diversity of associated aquatic hyphomycetes depends on the substrate. Fungal Ecology 6: 546–553.CrossRefGoogle Scholar
  40. Gonçalves, J. F., J. S. França, A. O. Medeiros, C. A. Rosa & M. Callisto, 2006. Leaf breakdown in a tropical stream. International Review of Hydrobiology 91: 164–177.CrossRefGoogle Scholar
  41. Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in stream: a review. International Review of Hydrobiology 86: 383–393.CrossRefGoogle Scholar
  42. Graça, M. A. S. & F. Bärlocher, 2005. Radial diffusion assay for s. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 101–107.CrossRefGoogle Scholar
  43. Graça, M. A. S. & C. Cressa, 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review Hydrobiology 1: 27–41.CrossRefGoogle Scholar
  44. Graça, M. A. S. & M. Zimmer, 2005. Leaf toughness. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 121–128.CrossRefGoogle Scholar
  45. Graça, M. A. S., C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies & C. Barrios, 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46: 947–957.CrossRefGoogle Scholar
  46. Grafius, E. & N. H. Anderson, 1979. Population dynamics, bioenergetics, and role of Lepidostoma quercina Ross (Trichoptera: Lepidostomatidae) in an Oregon woodland stream. Ecology 60: 433–441.CrossRefGoogle Scholar
  47. Grafius, E. & N. H. Anderson, 1980. Population dynamics and role of two species of Lepidostoma (Trichoptera: Lepidostomatidae) in an Oregon coniferous forest stream. Ecology 61: 808–816.CrossRefGoogle Scholar
  48. Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments. Ecological monographs 54: 187–211.CrossRefGoogle Scholar
  49. IPCC – Intergovernmental Panel on Climate Change, 2007. Climate Change 2007: The Physical Science Basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  50. Iversen, T. M., 1979. Laboratory Energetics of Larvae of Sericostoma personatum (Trichoptera). Holarctic Ecology 2: 1–5.Google Scholar
  51. Johns, C. V. & L. Hughes, 2002. Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson’s Curse, Echium plantagineum (Boraginaceae). Global Change Biology 8: 142–152.CrossRefGoogle Scholar
  52. Kingsolver, J. G. & R. B. Huey, 2008. Size, temperature, and fitness: three rules. Evolutionary Ecology Research 10: 251–268.Google Scholar
  53. Kominoski, J. S. & A. D. Rosemond, 2012. Conservation from the bottom up: forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshwater Science 31: 51–68.CrossRefGoogle Scholar
  54. Landeiro, V. L., N. Hamada & A. S. Melo, 2008. Responses of aquatic invertebrate assemblages and leaf breakdown to macroconsumer exclusion in Amazonian “terra firme” streams. Fundamental and Applied Limnology 172: 49–58.CrossRefGoogle Scholar
  55. Landeiro, V. L., N. Hamada, B. S. Godoy & A. S. Melo, 2010. Effects of litter patch area on macroinvertebrate assemblage structure and leaf breakdown in Central Amazonian streams. Hydrobiologia 649: 355–363.CrossRefGoogle Scholar
  56. Li, A. O. Y. & D. Dudgeon, 2008. The effects of leaf litter characteristics on feeding and fitness of a tropical stream shredder, Anisocentropus maculatus (Trichoptera: Calamoceratidae). Marine and Freshwater Research 59: 897–901.CrossRefGoogle Scholar
  57. Martins, R. T., A. S. Melo, J. F. Gonçalves & N. Hamada, 2014. Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zoologia 31: 337–342.CrossRefGoogle Scholar
  58. Martins, R. T., A. S. Melo, J. F. G. Júnior & N. Hamada, 2015. Leaf-litter breakdown in urban streams of Central Amazonia: direct and indirect effects of physical, chemical, and biological factors. Freshwater Science 34: e10.1086/681086.CrossRefGoogle Scholar
  59. Mas-Martí, E., A. M. Romaní & I. Muñoz, 2015. Consequences of warming and resource quality on the stoichiometry and nutrient cycling of a stream shredder. PLoS One 10: e0118520.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Moline, A. B. & N. L. Poff, 2008. Growth of an invertebrate shredder on native (Populus) and non-native (Tamarix, Elaeagnus) leaf litter. Freshwater Biology 53: 1012–1020.CrossRefGoogle Scholar
  61. Mooney, H., A. Larigauderie, M. Cesario, T. Elmquist, O. Hoegh-Guldberg, S. Lavorel, G. M. Mace, M. Palmer, R. Scholes & T. Yahara, 2009. Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability 1: 46–54.CrossRefGoogle Scholar
  62. Moretti, M. S., R. Loyola, B. Becker & M. Callisto, 2009. Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae). Hydrobiologia 630: 199–206.CrossRefGoogle Scholar
  63. Navarro, F. K. S. P., R. S. Rezende & J. F. Gonçalves, 2013. Experimental assessment of temperature increase and presence of predator carcass changing the response of invertebrate shredders. Biota Neotropica 13: 28–33.CrossRefGoogle Scholar
  64. Nolen, J. A. & R. G. Pearson, 1993. Factors affecting litter processing by Anisocentropus kirramus (Trichoptera: Calamoceratidae) from an Australian tropical rainforest stream. Freshwater Biology 29: 469–479.CrossRefGoogle Scholar
  65. Novozamsky, J., V. J. G. Houba, R. van Eck & W. van Vark, 1983. A novel digestion technique for multielement plant analysis. Communications in Soil Science and Plant Analysis 14: 239–248.CrossRefGoogle Scholar
  66. Park, S. & K. H. Cho, 2003. Nutrient leaching from leaf litter of emergent macrophyte (Zizania latifolia) and the effects of water temperature on the leaching process. Korean Journal of Biological Sciences 7: 289–294.CrossRefGoogle Scholar
  67. Petchey, O. L., P. T. McPhearson, T. M. Casey & P. J. Morin, 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402: 69–72.CrossRefGoogle Scholar
  68. Peterson, C. H. & P. E. Renaud, 1989. Analysis of feeding preference experiments. Oecologia 80: 82–86.CrossRefPubMedGoogle Scholar
  69. Prather, A. L., 2003. Revision of the Neotropical caddisfly genus Phylloicus (Trichoptera: Calamoceratidae). Zootaxa 275: 1–214.CrossRefGoogle Scholar
  70. Rajashekhar, M. & K. M. Kaveriappa, 2000. Effects of temperature and light on growth and sporulation of aquatic hyphomycetes. Hydrobiologia 441: 149–153.CrossRefGoogle Scholar
  71. Rincón, J. & I. Martínez, 2006. Food quality and feeding preferences of Phylloicus sp. (Trichoptera:Calamoceratidae). Journal of the North American Benthological Society 25: 209–215.CrossRefGoogle Scholar
  72. Rumbos, C. I., D. Stamopoulos, G. Georgoulas & E. Nikolopoulou, 2010. Factors affecting leaf litter decomposition by Micropterna sequax (Trichoptera: Limnephilidae). International Review of Hydrobiology 95: 383–394.CrossRefGoogle Scholar
  73. Sridhar, K. R. & F. Bärlocher, 1993. Effect of temperature on growth and survival of five aquatic hyphomycetes. Sydowia 45: 377–387.Google Scholar
  74. Swan, C. M. & M. A. Palmer, 2006. Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown. Oecologia 147: 469–478.CrossRefPubMedGoogle Scholar
  75. Sweeney, B. W. & R. L. Vannote, 1978. Size variation and distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444–446.CrossRefPubMedGoogle Scholar
  76. Tuchman, N. C., K. A. Wahtera, R. G. Wetzel & J. A. Teeri, 2003. Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. Hydrobiologia 495: 203–211.CrossRefGoogle Scholar
  77. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  78. Verberk, W. C. E. P. & D. T. Bilton, 2013. Respiratory control in aquatic insects dictates their vulnerability to global warming. Biology Letters 9: 1–4.CrossRefGoogle Scholar
  79. Villanueva, V. D., R. Albariño & C. Canhoto, 2011. Detritivores feeding on poor quality food are more sensitive to increased temperatures. Hydrobiologia 678: 155–165.CrossRefGoogle Scholar
  80. Wagner, R., 1990. Influence of temperature, photoperiod and nutrition on growth and consumption of Chaetopteryx villosa (Trichoptera). Holarctic Ecology 13: 247–254.Google Scholar
  81. Waldbauer, G. P., 1968. The consumption and utilization of food by insects. Advances in Insect Physiology 5: 229–288.CrossRefGoogle Scholar
  82. Witkowski, E. T. F. & B. B. Lamont, 1991. Leaf specific mass confounds leaf density and thickness. Oecologia 88: 486–493.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Renato T. Martins
    • 1
    Email author
  • Adriano S. Melo
    • 2
  • José F. GonçalvesJr.
    • 3
  • Claudimir M. Campos
    • 1
  • Neusa Hamada
    • 1
  1. 1.Programa de Pós-Graduação em Entomologia, Coordenação de BiodiversidadeInstituto Nacional de Pesquisas da Amazônia - INPAManausBrazil
  2. 2.Departamento de Ecologia, ICBUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.AquaRiparia, Departamento de Ecologia, IBUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations