Hydrobiologia

, Volume 789, Issue 1, pp 7–29 | Cite as

Photo-oxidation processes, properties of DOC, reactive oxygen species (ROS), and their potential impacts on native biota and carbon cycling in the Rio Negro (Amazonia, Brazil)

  • Ora E. Johannsson
  • D. Scott Smith
  • Helen Sadauskas-Henrique
  • Giselle Cimprich
  • Chris M. Wood
  • Adalberto L. Val
ADAPTA

Abstract

Given the reported degraded nature of DOC in the Rio Negro, and low oxygen, pH, and bacterial riverine levels, we hypothesized: (1) DOC would have strong humic and fulvic acid fluorescence signals with high aromaticity and large mean molecular weight; and (2) photo-oxidation rates would be slow, and reactive oxygen species (ROS) concentrations low, producing no oxidative stress in biota. We surveyed the environment and properties of DOC and explored DOC photo-oxidation and fish sensitivity to DOC products. DOC properties were investigated using absorption and fluorescence indices and parallel factor analysis (PARAFAC) of excitation–emission matrices. ROS concentrations were measured spectrophotometrically. A native fish, Hemigrammus levis, was exposed to photo-oxidizing DOC and its tissues (brain, gill, liver) assayed for changes in antioxidant and biotransformation enzymes. With respect to our hypotheses, (1) DOC was highly terrigenous, with high SAC340 values (aromaticity), high capacity to produce ROS, and high tryptophan-like fluorescence (bacterial, autochthonous signal); (2) photo-oxidation rates were appreciable, while products were related to mean UV-radiation levels (total radiation was constant). ROS levels were often higher than freshwater averages, yet fish experienced no oxidative stress. Results suggest photo-oxidation influences patterns in C-cycling, bacterial production and community dynamics between wet and dry seasons.

Keywords

Photo-oxidation EEMS PARAFAC Oxidative stress Carbon cycling Anavilhanas Archipelago 

Notes

Acknowledgments

Many people have contributed to the success of this work, especially Maria de Nazaré de Paula da Silva and Vera Almeida Val who organized the expeditions and met our many requests. Others include Linda Diao—analysis of DOC samples, Rafael Duarte—assistance with the fish experiment, Gudrun De Boek—loan of her multimeter, Greg Goss—for sharing his UV data, Marcel de Paula Corrêa—for irradiance data, Sylvia Wood—maps in Fig. 1, Derek Campos—fish identification, Jeff Richards—logistical support, and Danielle McDonald—space to write at the Rosenstiel School of Marine and Atmospheric Sciences. Thank you all. Supported in Brazil by FAPEAM and CNPq through the ICT-ADAPTA grant to ALV and Ciência sem Fronteiras grant to ALV and CMW, and in Canada by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grants to CMW and DSS. CMW was supported by the Canada Research Chairs program.

Supplementary material

10750_2016_2687_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)

References

  1. Abele, D., B. Burlando, A. Viarengo & H.-O. Pörtner, 1998. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comparative Biochemistry and Physiology Part B 120: 425–435.CrossRefGoogle Scholar
  2. Abele-Oeschger, D., H. Tüg & R. Rüdigers, 1997. Dynamics of UV-driven hydrogen peroxide formation on an intertidal sandflat. Limnology and Oceanography 42: 1406–1415.CrossRefGoogle Scholar
  3. Al Reasi, H. A., C. M. Wood & D. S. Smith, 2011. Physicochemical and spectroscopic properties of natural organic matter (NOM) from various sources and implications for ameliorative effects on metal toxicity to aquatic biota. Aquatic Toxicology 103: 179–190.CrossRefPubMedGoogle Scholar
  4. Al Reasi, H. A., D. S. Smith & C. M. Wood, 2012. Evaluating the ameliorative effect of natural dissolved organic matter (DOM) quality on copper toxicity to Daphnia magna: improving the BLM. Ecotoxicology 21: 525–537.CrossRefGoogle Scholar
  5. Amado, L. L., M. L. Garcia, P. B. Ramos, R. F. Freitas, B. Zafalon, J. L. R. Ferreira, J. S. Yunes & J. M. Monserrat, 2009. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Science of the Total Environment 407: 2115–2123.CrossRefPubMedGoogle Scholar
  6. Amon, R. M. W. & R. Benner, 1995. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica et Cosmochimica Acta 60: 1783–1792.CrossRefGoogle Scholar
  7. Anderson, A., S. de Machado, C. M. Wood, A. Bianchini & P. L. Gillis, 2014. Responses of biomarkers in wild freshwater mussels chronically exposed to complex contaminant mixtures. Ecotoxicology 23: 1345–1358.CrossRefGoogle Scholar
  8. Araujo-Lima, C. A. R. M., L. P. S. Portugal & E. G. Ferreira, 1986. Fish-macrophyte relationship in the Anavilhanas Archipelago, a black water system in the Central Amazon. Journal of Fish Biology 29: 1–11.CrossRefGoogle Scholar
  9. Aucour, A.-M., F. X. Tao, P. Moreira-Tureq, P. Seyler, S. Sheppard & M. F. Benedetti, 2002. The Amazon River: behaviour of metals (Fe, Al, Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solimões confluence. Chemical Geology 197: 271–285.CrossRefGoogle Scholar
  10. Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill & A. Enrich-Prast, 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.CrossRefPubMedGoogle Scholar
  11. Benner, R., S. Opsahl, G. Chin-Leo, J. E. Richey & B. R. Forsberg, 1995. Bacterial carbon metabolism in the Amazon River system. Limnology and Oceanography 40: 1262–1270.CrossRefGoogle Scholar
  12. Beutler, E., 1975. Red cell metabolism. A manual of biochemical methods. Grune & Stratton Inc., New York.Google Scholar
  13. Bradford, M., 1978. A rapid and sensitive method for the quantification of microgram quantities of protein, using the principle of protein-dye-binding. Analytical Biochemistry 72: 248–254.CrossRefGoogle Scholar
  14. Bruskov, V. I., L. V. Malakhova, Zh K Masalimov & A. V. Chernikov, 2002a. Heat induced reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acids Research 30: 1354–1360.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bruskov, V. I., Zh K Masalimov & A. V. Chernikov, 2002b. Heat-induced generation of reactive oxygen species in water. Doklady Biochemistry and Biophysics 384: 181–184.CrossRefPubMedGoogle Scholar
  16. Cammack, W. K. L., J. Kalff, Y. T. Prairie & E. M. Smith, 2004. Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnology and Oceanography 49: 2034–2045.CrossRefGoogle Scholar
  17. Cooper, W. J., C. Shao, D. R. S. Lean, A. S. Gordon & F. E. Scully, 1994. Factors affecting the distribution of H,O, in surface waters. In Environmental Chemistry of Lakes and Reservoirs. Advances in Chemistry Series 237. American Chemical Society, pp. 393–422.Google Scholar
  18. Cory, R. M. & D. M. McKnight, 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science and Technology 39: 8142–8149.CrossRefPubMedGoogle Scholar
  19. Cory, R. M., C. P. Ward, B. C. Crump & G. W. Kling, 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925–928.CrossRefPubMedGoogle Scholar
  20. da Rosa, C. E., A. Bianchini & J. M. Monserrat, 2008. Antioxidant responses of Laeonereis acuta (Polychaeta) after exposure to hydrogen peroxide. Brazilian Journal of Medical and Biological Research 41: 117–121.CrossRefPubMedGoogle Scholar
  21. Dahlén, J., S. Bertilsson & C. Petterson, 1996. Effects of UV-A irradiation on dissolved organic matter in humic surface waters. Environment International 22: 501–506.CrossRefGoogle Scholar
  22. Davis, E. S., 1986. Chromobacterium. In Braude, A. I., C. E. Davis & J. Fierer (eds), Infectious Diseases and Medical Microbiology, 2nd ed. WB Saunders, Philadelphia: 358–361.Google Scholar
  23. DePalma, G. S. S., W. R. Arnold, J. C. McGeer, D. G. Dixon & D. S. Smith, 2011. Variability in dissolved organic matter fluorescence and reduced sulfur concentration in coastal marine and estuarine environments. Applied Geochemistry 26: 394–404.CrossRefGoogle Scholar
  24. De Schamphelaere, K. A. C., F. M. Vasconcelos, F. M. G. Tack, H. E. Allen & C. R. Janssen, 2004. Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environmental Toxicology and Chemistry 23: 1248–1255.CrossRefPubMedGoogle Scholar
  25. Determann, S., J. M. Lobbes, J. M. Reuter & J. Rullkotter, 1998. Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Marine Chemistry 62: 137–156.CrossRefGoogle Scholar
  26. Draper, W. M. & D. G. Crosby, 1983. The photochemical generation of hydrogen peroxide in natural waters. Archives of Environmental Contamination and Toxicology 12: 121–126.CrossRefGoogle Scholar
  27. Durate, R. M., D. S. Smith, A. L. Val & C. M. Wood, 2016. Dissolved organic carbon from the upper Rio Negro protects zebrafish (Danio rerio) against ionoregulatory disturbances caused by low pH exposure. Scientific Reports 6: 20377. doi: 10.1038/srep20377.CrossRefGoogle Scholar
  28. Duthie, P. B., P. Brando, G. P. Asner & C. B. Field, 2015. Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Science 12: 13172–13177.Google Scholar
  29. Ertel, J. R., J. I. Hedges, A. H. Devol, J. E. Richey & M.-N. Góes-Ribeiro, 1986. Dissolved humic substances of the Amazon River system. Limnology and Oceanography 31: 739–754.CrossRefGoogle Scholar
  30. Fasching, C. & T. J. Battin, 2012. Exposure of dissolved organic matter to UV-radiation increases bacterial growth efficiency in a clear-water Alpine stream. Aquatic Sciences 74: 143–153.CrossRefGoogle Scholar
  31. Febria, C. M., L. F. W. Lesack, J. A. L. Gareis & M. L. Bothwell, 2006. Patterns of hydrogen peroxides among lakes of the Mackenzie Delta, western Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences 63: 2107–2118.CrossRefGoogle Scholar
  32. Forsberg, B. R., A. H. Devol, J. E. Richey, L. A. Martinelli & H. dos Santos, 1988. Factors controlling nutrient conditions in Amazon floodplain lakes. Limnology & Oceanography 33: 41–56.CrossRefGoogle Scholar
  33. Galvez, F., A. Donini, R. C. Playle, S. Smith, M. O’Donnell & C. M. Wood, 2008. A matter of potential concern: natural organic matter alters the electrical properties of fish gills. Environmental Science and Technology 42: 9385–9390.CrossRefPubMedGoogle Scholar
  34. Häkkinen, P. J., A. M. Anesio & W. Granéli, 2004. Hydrogen peroxide distribution, production, and decay in boreal lakes. Canadian Journal of Fisheries and Aquatic Sciences 61: 1520–1527.CrossRefGoogle Scholar
  35. Hopkins, J. & G. R. Tudhope, 1973. Glutathione peroxidase in human red cells in health and disease. Journal of Haematology 25: 563–575.CrossRefGoogle Scholar
  36. Huang, C.-C., Y.-M. Li, H. Yang, D.-Y. Sun, L.-J. Xu & X. Chen, 2013. Study of influencing factors to chromophoric dissolved organic matter absorption properties from fluorescence features in Taihu lake in autumn. Journal of Limnology 72: 326–335.Google Scholar
  37. Hudson, N., A. Baker & D. Reynolds, 2007. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications 23: 631–649.CrossRefGoogle Scholar
  38. Huovinen, P. S., H. Penttilä & M. R. Soimasuo, 2003. Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland. Chemosphere 51: 205–214.CrossRefPubMedGoogle Scholar
  39. Johannsson, O. E., H. L. Bergman, C. M. Wood, P. Laurent, D. G. Kavembe, A. Bianchini, J. N. Maina, C. Chevalier, L. F. Bianchini, B. P. Michael & R. O. Ojoo, 2014. Air breathing in the Lake Magadi tilapia Alcolapia grahami, under normoxic and hyperoxic conditions, and the association with sunlight and ROS. Journal of Fish Biology 84: 844–863.CrossRefPubMedGoogle Scholar
  40. Jordan, C. F. & R. Herrera, 1981. Tropical rain forests: are nutrients really critical? The American Naturalist 117: 167–180.CrossRefGoogle Scholar
  41. Keen, J. H., W. H. Habig & W. B. Jakoby, 1976. Mechanism for several activities of glutathione-S-transferase. Journal of Biological Chemistry 20: 6183–6188.Google Scholar
  42. Konhauser, K. O., W. F. Fyfe & B. I. Kronberg, 1994. Multi-element chemistry of some Amazonian waters and soils. Chemical Geology 111: 155–175.CrossRefGoogle Scholar
  43. Kumar, M. R., 2012. Chromobacterium violaceum: a rare bacterium isolated from a wound over the scalp. International Journal of Applied and Medical Research 2: 70–72.Google Scholar
  44. Küchler, I. L., N. Miekeley & B. R. Forsberg, 1994. Molecular mass distributions of dissolved organic carbon and associated metals in water from Rio Negro and Rio Solimões. The Science of the Total Environment 156: 207–216.CrossRefGoogle Scholar
  45. Kullberg, A., K. H. Bishop, A. Hargeby, M. Jansson & R. C. Peterson Jr, 1993. The ecological significance of dissolved organic carbon in acidified waters. Ambio 22: 331–337.Google Scholar
  46. Leenheer, J. A., 1980. Origin and nature of humic substances in the waters of the Amazon River basin. Acta Amazonica 10: 513–526.Google Scholar
  47. Lindell, M. J., W. Granéli & L. J. Tranvik, 1995. Enhanced bacterial growth in response to photochemical transformation of dissolved organic carbon. Limnology and Oceanography 40: 195–199.CrossRefGoogle Scholar
  48. Ma, X. & S. A. Green, 2004. Photochemical transformation of dissolved organic carbon in Lake Superior—An in-situ experiment. Journal of Great Lakes Research 30 Supplement 1: 97–112.CrossRefGoogle Scholar
  49. Matsuo, A. Y. O., C. M. Wood & A. L. Val, 2005. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water. Aquatic Toxicology 74: 351–364.CrossRefPubMedGoogle Scholar
  50. McCord, J. E. & I. Fridovich, 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244: 6049–6055.PubMedGoogle Scholar
  51. McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe & D. T. Anderson, 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.CrossRefGoogle Scholar
  52. Miller, W. L. & D. R. Kester, 1994. Peroxide variations in the Sargasso Sea. Marine Chemistry 48: 17–29.CrossRefGoogle Scholar
  53. Molecular Probes, 2009. Amplex Ultra Red Reagent, Catalogue no. 36006.Google Scholar
  54. Patel-Sorrentino, N., S. Mounier & J. Y. Benaim, 2002. Excitation–emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Research 36: 2571–2581.CrossRefPubMedGoogle Scholar
  55. Patel-Sorrentino, N., S. Mounier, Y. Lucas & J. Y. Benaim, 2004. Effects of UV–visible irradiation on natural organic matter from the Amazon basin. Science of the Total Environment 321: 231–239.CrossRefPubMedGoogle Scholar
  56. Rai, H. & G. Hill, 1982. Establishing the pattern of heterotrophic bacterial activity in three Central Amazonian lakes. Hydrobiologia 86: 121–126.CrossRefGoogle Scholar
  57. Roelke, D. L., J. B. Cotner, J. V. Montoya, C. E. Del Castillo, S. E. Davis, J. A. Snider, G. M. Gable & K. O. Winemiller, 2006. Optically determined sources of allochthonous organic matter and metabolic characterizations in a tropical oligotrophic river and associated lagoon. Journal of the North American Benthological Society 25: 185–197.CrossRefGoogle Scholar
  58. Ryan, A. C., E. J. Van Genderen, J. R. Tomasso & S. J. Klaine, 2004. Influence of natural organic matter source on copper toxicity to larval fathead minnows (Pimephales promelas): implications for the biotic ligand model. Environmental Toxicology and Chemistry 23: 1567–1574.CrossRefPubMedGoogle Scholar
  59. Saint-Paul, U., 1996. Comparisons of seasonal and diurnal vertical oxygen distributions in central Amazonian white and black water lakes. Ecotropica 2: 73–77.Google Scholar
  60. Scully, N. M., D. J. McQueen, D. R. S. Lean & W. J. Cooper, 1996. Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75°N gradient. Limnology and Oceanography 41: 540–548.CrossRefGoogle Scholar
  61. Scully, N. M., W. J. Cooper & L. J. Tranvik, 2003. Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiology Ecology 46: 353–357.CrossRefPubMedGoogle Scholar
  62. Steinberg, C. E. W., S. Kamara, V Yu Prokhotskaya, L. M. Ianas, T. A. Karasyova, M. A. Timofeyev, Z. Jie, A. Paul, T. Meinelt, V. F. Farjalla, A. Y. O. Matsuo, B. K. Burnison & R. Menzel, 2006. Dissolved humic substances – ecological driving forces from the individual to the ecosystem level? Freshwater Biology 21: 1189–1210.CrossRefGoogle Scholar
  63. Thurman, E. M., 1985. Organic Geochemistry of Natural Waters. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht.CrossRefGoogle Scholar
  64. Timofeyev, M. A., C. Wiegand, B. K. Burnison, Z. M. Shatilina, S. Pflugmacher & C. E. W. Steinberg, 2004. Direct impact of natural organic matter (NOM) on freshwater amphipods. The Science of the Total Environment 319: 115–121.CrossRefPubMedGoogle Scholar
  65. Tucker, A. J. & C. E. Williamson, 2011. Lakes in a new light: indirect effects of ultraviolet radiation. Freshwater Reviews 4: 115–134.CrossRefGoogle Scholar
  66. Val, A. L. & V. M. F. Almeida-Val, 1995. Fishes of the Amazon and Their Environment. Springer, Berlin.CrossRefGoogle Scholar
  67. Vigneault, B., A. Percot, M. LaFleur & P. C. G. Campbell, 2000. Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environmental Science and Technology 34: 3907–3913.CrossRefGoogle Scholar
  68. Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, San Diego, CA.Google Scholar
  69. Winters, A. R., T. A. E. Fish, R. C. Playle, D. S. Smith & P. J. Curtis, 2007. Photodegradation of natural organic matter from diverse freshwater sources. Aquatic Toxicology 84: 215–222.CrossRefGoogle Scholar
  70. Wissmar, R. C., J. E. Richey, R. F. Stallard & J. M. Edmond, 1981. Plankton metabolism and carbon processes in the Amazon River, its tributaries, and floodplain waters, Peru-Brazil, May–June 1977. Ecology 62: 1622–1633.CrossRefGoogle Scholar
  71. Wood, C. M., A. Y. O. Matsuo, R. W. Wilson, R. J. Gonzalez, M. L. Patrick, R. C. Playle & A. L. Val, 2003. Protection by natural blackwater against disturbances in ion fluxes caused by low pH exposure in freshwater stingrays endemic to the Rio Negro. Physiological Biochemical Zoology 76: 12–27.CrossRefPubMedGoogle Scholar
  72. Wood, C. M., H. A. Al-Reasi & D. S. Smith, 2011. The two faces of DOC. Aquatic Toxicology 105S: 3–8.CrossRefGoogle Scholar
  73. Yan, M., G. V. Korshin, F. Claret, J.-P. Croue, M. Fabbricino, H. Gallard, T. Schäfer & M. F. Benedetti, 2014. Effects of charging on the chromophores of dissolved organic matter from the Rio Negro basin. Water Research 59: 154–164.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ora E. Johannsson
    • 1
  • D. Scott Smith
    • 2
  • Helen Sadauskas-Henrique
    • 3
  • Giselle Cimprich
    • 2
  • Chris M. Wood
    • 1
    • 4
  • Adalberto L. Val
    • 3
  1. 1.Department of ZoologyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of ChemistryWilfrid Laurier UniversityWaterlooCanada
  3. 3.Laboratório de Ecofisiologia e Evolução MolecularInstituto Nacional de Pesquisas da Amazônia, INPAManausBrazil
  4. 4.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations