Advertisement

Hydrobiologia

, Volume 773, Issue 1, pp 77–86 | Cite as

Differential effects of Bluegill Sunfish (Lepomis macrochirus) on two fish-tolerant species of tadpoles (Anaxyrus americanus and Lithobates catesbeianus)

  • Geoffrey R. SmithEmail author
  • Amber A. Burgett
  • Kathleen G. Temple
  • Kathryn A. Sparks
Primary Research Paper

Abstract

Amphibians can be partitioned among ponds based on their ability to tolerate fish predation. However, even among fish-tolerant species susceptibility to fish predators varies, with consequences for both prey and predator. We examined the effects of Bluegill (Lepomis macrochirus) and tadpole density on two fish-tolerant species of tadpoles (American Toad, Anaxyrus americanus; American Bullfrog, Lithobates catesbeianus). For A. americanus, Bluegill presence decreased survivorship, whereas in L. catesbeianus, survivorship was higher with Bluegill. Growth of neither species was affected by Bluegill. In A. americanus, development increased with initial tadpole density with Bluegill, but decreased with initial tadpole density in the absence of Bluegill. Anaxyrus americanus were less active with Bluegill. Bluegill grew faster with initial A. americanus tadpole density, but showed no change in growth with initial L. catesbeianus tadpole density. There was more periphyton present at the end of both experiments in mesocosms with Bluegill, and periphyton decreased with increasing tadpole density at a faster rate in the presence of A. americanus tadpoles compared to L. catesbeianus tadpoles. Our results show that not all fish-tolerant species of anurans are affected in the same way by fish predators, with potential consequences for the anurans, fish predator, and the broader aquatic community.

Keywords

Amphibia Density Fish Predation Tadpoles 

Notes

Acknowledgments

We thank K. Winter for her assistance during the experiment, and two anonymous reviewers for their comments on an earlier version of this manuscript. This research was supported by the Denison University Research Foundation and the Howard Hughes Medical Institute. The eggs used for these experiments were collected under permit from the Ohio Department of Wildlife. This research was approved by the Denison University IACUC (2004-01).

References

  1. Adams, M. J., C. A. Pearl & R. B. Bury, 2003. Indirect facilitation of anuran invasion by non-native fishes. Ecology Letters 6: 343–351.CrossRefGoogle Scholar
  2. Adams, C. K., D. Saenz & R. N. Conner, 2011. Palatability of twelve species of anuran larvae in eastern Texas. American Midland Naturalist 166: 211–223.CrossRefGoogle Scholar
  3. Anholt, B. R., S. Negovetic, C. Rauter & C. Som, 2005. Predator complement determines the relative success of tadpoles of the Rana esculenta complex. Evolutionary Ecology Research 7: 733–741.Google Scholar
  4. Anteau, M. J., A. D. Afton, A. C. E. Aneau & E. B. Moser, 2011. Fish and land use influence Gammarus lacustris and Hyalella azteca (Amphipoda) densities in large wetlands across the upper Midwest. Hydrobiologia 664: 69–80.CrossRefGoogle Scholar
  5. Boone, M. D. & R. D. Semlitsch, 2003. Interactions of bullfrog tadpole predators and an insecticide: predator release and facilitation. Oecologia 137: 610–616.CrossRefPubMedGoogle Scholar
  6. Boone, M. D., R. D. Semlitsch, E. E. Little & M. C. Doyle, 2007. Multiple stressors in amphibian communities: effects of chemical contamination, bullfrogs, and fish. Ecological Applications 17: 291–301.CrossRefPubMedGoogle Scholar
  7. Boyd, S. H., 1975. Inhibition of fish reproduction by Rana catesbeiana larvae. Physiological Zoology 48: 225–234.CrossRefGoogle Scholar
  8. Brodie Jr, E. D. & D. R. Formanowicz Jr, 1987. Antipredator mechanisms of larval anurans: protection of palatable individuals. Herpetologica 43: 369–373.Google Scholar
  9. Bull, E. L. & D. B. Marx, 2002. Influence of fish and habitat on amphibian communities in high elevation lakes in northeastern Oregon. Northwestern Science 76: 240–248.Google Scholar
  10. Bunnell, J. F. & R. H. Zampella, 2008. Native fish and anuran assemblages differ between impoundments with and without non-native Centrarchids and Bullfrogs. Copeia 2008: 931–939.CrossRefGoogle Scholar
  11. Eklöv, P., 2000. Chemical cues from multiple predator-prey interactions induce changes in behavior and growth of anuran larvae. Oecologia 123: 192–199.CrossRefGoogle Scholar
  12. Eklöv, P. & E. E. Werner, 2000. Multiple predator effects on size-dependent behavior and mortality of two species of anuran larvae. Oikos 88: 250–258.CrossRefGoogle Scholar
  13. Evenson, E. J. & K. C. Kruse, 1982. Effect of a diet of bullfrog (Rana catesbeiana) larvae on the growth of the largemouth bass (Micropterus salmoides). Progressive Fish-Culturist 44: 44–46.CrossRefGoogle Scholar
  14. Fryxell, D. C., H. A. Arnett, T. M. Apgar, M. J. Kinnison & E. P. Palkovacs, 2015. Sex ratio variation shapes the ecological effects of a globally introduced freshwater fish. Proceedings of the Royal Society 282B: 20151970.CrossRefGoogle Scholar
  15. Gallie, J. A., R. L. Mumme & S. A. Wissinger, 2001. Experience has no effect on the development of chemosensory recognition of predators by tadpoles of the American Toad, Bufo americanus. Herpetologica 57: 376–383.Google Scholar
  16. Gerry, S. P., M. Vogelzang, J. M. Ascher & D. J. Ellerby, 2013. Variation in the diet and feeding morphology of polyphonic Lepomis macrochirus. Journal of Fish Biology 82: 338–346.CrossRefPubMedGoogle Scholar
  17. Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.Google Scholar
  18. Gunzburger, M. S. & J. Travis, 2005. Critical literature review of the evidence for unpalatability of amphibian eggs and larvae. Journal of Herpetology 39: 547–571.CrossRefGoogle Scholar
  19. Holomuzki, J. R., 1995. Oviposition sites and fish-deterrent mechanisms of two stream anurans. Copeia 1995: 607–613.CrossRefGoogle Scholar
  20. Hoyle, J. A. & A. Keast, 1987. The effect of prey morphology and size on handling time in a piscivore, the largemouth bass (Micropterus salmoides). Canadian Journal of Zoology 65: 1972–1977.CrossRefGoogle Scholar
  21. Kats, L. B., J. W. Petranka & A. Sih, 1988. Antipredator defenses and the persistence of amphibian larvae with fishes. Ecology 69: 1865–1870.CrossRefGoogle Scholar
  22. Knapp, R. A., 2005. Effects of non-native fish and habitat characteristics on lentic herpetofauna in Yosemite National Park, USA. Biological Conservation 121: 265–279.CrossRefGoogle Scholar
  23. Krishna, S. N. & S. B. Krishna, 2013. American Bullfrog Lithobates catesbeianus (Shaw 1802). In Pfingsten, R. A., J. G. Davis, T. O. Matson, G. J. Lipps Jr, D. Wynn & B. J. Armitage (eds), Amphibians of Ohio. Ohio Biological Survey, Columbus: 585–600.Google Scholar
  24. Kuhlmann, M. L., S. M. Badylak & E. L. Carvin, 2008. Testing the differential predation hypothesis for the invasion of rusty crayfish in a stream community: laboratory and field experiments. Freshwater Biology 53: 113–128.Google Scholar
  25. Lewis, W. M. & D. R. Helms, 1964. Vulnerability of forage organisms to largemouth bass. Transactions of the American Fisheries Society 93: 315–318.CrossRefGoogle Scholar
  26. Lewis, W. M., G. E. Gunning, E. Lyles & W. L. Bridges, 1961. Food choice of largemouth bass as a function of availability and vulnerability of food items. Transactions of the American Fisheries Society 90: 277–280.CrossRefGoogle Scholar
  27. Maezono, Y. & T. Miyashita, 2003. Community-level impacts induced by introduced largemouth bass and bluegill in farm ponds in Japan. Biological Conservation 109: 111–121.CrossRefGoogle Scholar
  28. Marsh-Matthews, E., J. Thompson, W. J. Matthews, A. Geheber, N. R. Franssen & J. Barkstedt, 2013. Differential survival of two minnow species under experimental sunfish predation: implications for re-invasion of a species into its native range. Freshwater Biology 58: 1745–1754.CrossRefGoogle Scholar
  29. Maurer, K. M., T. M. Stewart & F. O. Lorenz, 2014. Direct and indirect effects of fish on invertebrates and tiger salamanders in prairie pothole wetlands. Wetlands 34: 735–745.CrossRefGoogle Scholar
  30. Mittelbach, G. G. & C. W. Osenberg, 1993. Stage-structured interactions in Bluegill: consequences of adult resource variation. Ecology 74: 2381–2394.CrossRefGoogle Scholar
  31. Mueller, G. A., J. Carpenter & D. Thornbrugh, 2006. Bullfrog (Rana catesbeiana) and red swamp crayfish (Procambarus clarkii) predation on early life stages of endangered razorback sucker (Xyrauchen texanus). Southwestern Naturalist 51: 258–261.CrossRefGoogle Scholar
  32. Nyström, P. & K. Åbjörnsson, 2000. Effects of fish chemical cues on the interactions between tadpoles and crayfish. Oikos 88: 181–190.CrossRefGoogle Scholar
  33. Orizaola, G. & F. Braña, 2006. Effect of salmonid introduction and other environmental characteristics on amphibian distribution and abundance in mountain lakes of northern Spain. Animal Conservation 9: 171–178.CrossRefGoogle Scholar
  34. Peacor, S. D., 2002. Positive effect of predators on prey growth rate through induced modifications of prey behavior. Ecology Letters 5: 77–85.CrossRefGoogle Scholar
  35. Relyea, R. A. & E. E. Werner, 1999. Quantifying the relation between predator-induced behavior and growth performance in larval anurans. Ecology 80: 2117–2124.CrossRefGoogle Scholar
  36. Resetarits Jr, W. J., J. F. Rieger & C. A. Binckley, 2004. Threat of predation negates density effects in larval gray treefrogs. Oecologia 138: 532–538.CrossRefPubMedGoogle Scholar
  37. Semlitsch, R. D., W. G. Peterman, T. C. Anderson, D. L. Drake & B. H. Ousterhout, 2015. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians. PLoS one 10(4): e0123055.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Smith, G. R. & A. R. Awan, 2009. The roles of predator identity and group size in the antipredator response of American Toad (Bufo americanus) and Bullfrog (Rana catesbeiana) tadpoles. Behaviour 146: 225–243.CrossRefGoogle Scholar
  39. Smith, G. R. & C. J. Dibble, 2012. Effect of an invasive fish (Gambusia affinis) and anthropogenic nutrient enrichment on American Toad (Anaxyrus americanus) tadpoles. Journal of Herpetology 46: 198–202.CrossRefGoogle Scholar
  40. Smith, G. R., J. E. Rettig, G. G. Mittelbach, J. L. Valiulis & S. R. Schaack, 1999. The effects of fish on assemblages of amphibians in ponds: a field experiment. Freshwater Biology 4: 829–837.CrossRefGoogle Scholar
  41. Smith, G. R., A. A. Burgett, K. A. Sparks, K. G. Temple & K. E. Winter, 2007. Temporal patterns in Bullfrog (Rana catesbeiana) tadpole activity: a mesocosm experiment on the effects of density and bluegill sunfish (Lepomis macrochirus) presence. Herpetological Journal 17: 199–203.Google Scholar
  42. Smith, G. R., A. A. Burgett, K. G. Temple, K. A. Sparks & K. E. Winter, 2008. The ability of three species of tadpoles to differentiate among potential fish predators. Ethology 114: 701–710.CrossRefGoogle Scholar
  43. Stoks, R. & M. A. McPeek, 2003. Antipredator behavior and physiology determine Lestes species turnover along the pond-permanence gradient. Ecology 84: 3327–3338.CrossRefGoogle Scholar
  44. Szuroczki, D. & J. M. L. Richardson, 2011. Palatability of the larvae of three species of Lithobates. Herpetologica 67: 213–221.CrossRefGoogle Scholar
  45. Thiemann, G. W. & R. J. Wassersug, 2000. Patterns and consequences of behavioural responses to predators and parasites in Rana tadpoles. Biological Journal of the Linnean Society 71: 513–528.CrossRefGoogle Scholar
  46. Voris, H. K. & J. P. Bacon Jr, 1966. Differential predation on tadpoles. Copeia 1966: 594–598.CrossRefGoogle Scholar
  47. Welsh Jr, H. H., K. L. Pope & D. Bolano, 2006. Sub-alpine distributions related to species palatability to non-native salmonids in the Klamath Mountains of northern California. Diversity and Distributions 12: 298–309.CrossRefGoogle Scholar
  48. Werner, E. E., 1994. Ontogenetic scaling of competitive relations: size-dependent effects and responses in two anuran larvae. Ecology 75: 197–213.CrossRefGoogle Scholar
  49. Werner, E. E. & M. A. McPeek, 1994. Direct and indirect effects of predators on two anuran species along an environmental gradient. Ecology 75: 1368–1382.CrossRefGoogle Scholar
  50. Werner, E. E., D. K. Skelly, R. A. Relyea & K. L. Yurewicz, 2007. Amphibian species richness across environmental gradients. Oikos 116: 1697–1712.CrossRefGoogle Scholar
  51. Woodward, B. D., 1983. Predator-prey interactions and breeding-pond use of temporary-pond species in a desert anuran community. Ecology 64: 1549–1555.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Geoffrey R. Smith
    • 1
    Email author
  • Amber A. Burgett
    • 1
    • 2
  • Kathleen G. Temple
    • 1
    • 3
  • Kathryn A. Sparks
    • 1
    • 4
  1. 1.Department of BiologyDenison UniversityGranvilleUSA
  2. 2.Department of BiologyWittenberg UniversitySpringfieldUSA
  3. 3.Hocking College School of Natural ResourcesNelsonvilleUSA
  4. 4.LawrenceUSA

Personalised recommendations