, Volume 778, Issue 1, pp 105–120 | Cite as

Contrasting factors drive within-lake bacterial community composition and functional traits in a large shallow subtropical lake

  • Marla Sonaira Lima
  • David da Motta Marques
  • Ng Haig They
  • Katherine D. McMahon
  • Lúcia Ribeiro Rodrigues
  • Luciana de Souza Cardoso
  • Luciane Oliveira Crossetti


Lakes are considered as “islands” for assessing microbial biogeography, but bacterial community composition (BCC) and function may vary significantly within lakes, with the roles of scale and connectivity still unclear. This study investigated the spatial and temporal heterogeneity of the BCC (automated ribosomal intergenic spacer analysis) and functional traits (FT, carbon-source utilization), and the contribution of: (i) environmental variables, (ii) phytoplankton, (iii) season, and (iv) space, through variance partitioning in the large and well-mixed Lake Mangueira. The BCC and FT differed in time and space, with BCC being explained by environmental variables and phytoplankton, whereas FT was explained only by space. The smallest scale of variability detected by the BCC and FT (~49 km) was larger than scales found in the other studies, suggesting an effect of lake size (fetch and connectivity). Our results indicate that barriers to bacterial dispersal due to long distances are overcome by high connectivity, reinforcing the role of species sorting for BCC. FT were probably driven by gene dispersal and/or the effects of local conditions on migrant bacterial taxa and resuspended bacteria. Our results highlight the role of within-lake heterogeneity for ecosystem functioning and the implications for the appropriate scale to use in sampling bacterial communities.


Automated ribosomal intergenic spacer analysis Ecoplate Within-lake biogeography Variance partitioning Species sorting Dispersal Lake Mangueira 

Supplementary material

10750_2015_2610_MOESM1_ESM.tif (1.5 mb)
Supplementary Fig. S1 Contour plots showing temporal variation of OTUs and carbon substrates that contributed most to BCC and FT dissimilarities, according to SIMPER. Black dots represent the sampling points along Lake Mangueira. (TIFF 1491 kb)
10750_2015_2610_MOESM2_ESM.tif (463 kb)
Supplementary Fig. S2 Contour plot showing spatial variation of OTUs and carbon substrates that contributed most to BCC and FT dissimilarities, according to SIMPER. Black dots represent the sampling points along the South, Center and North areas of Lake Mangueira. (TIFF 462 kb)
10750_2015_2610_MOESM3_ESM.doc (70 kb)
Supplementary material 3 (DOC 70 kb)
10750_2015_2610_MOESM4_ESM.doc (94 kb)
Supplementary material 4 (DOC 94 kb)
10750_2015_2610_MOESM5_ESM.doc (66 kb)
Supplementary material 5 (DOC 67 kb)


  1. APHA, 1999. Eaton, A. D., L. S. Clesceri & A. E. Greenberg (eds). Standard Methods for the examination of water and wastewater. 20th ed. American Public Health Association Inc., Washington.Google Scholar
  2. Baines, S. B. & M. L. Pace, 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnology and Oceanography 36: 1078–1090.CrossRefGoogle Scholar
  3. Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.CrossRefPubMedGoogle Scholar
  4. Bell, T., D. Ager, J.-I. Song, J. A. Newmann, I. P. Thompson, A. K. Lilley & C. J. van der Gast, 2005. Larger islands house more bacterial taxa. Science 308: 188.CrossRefGoogle Scholar
  5. Bissett, A., A. E. Richardson, G. Baker, S. Wakelin & P. H. Thrall, 2010. Life history determines biogeographical patterns of soil bacterial communities over multiple spatial scales. Molecular Ecology 19: 4315–4327.CrossRefPubMedGoogle Scholar
  6. Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecological Modelling 153: 51–68.CrossRefGoogle Scholar
  7. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  8. Carlsson, P. & D. A. Caron, 2001. Seasonal variation of phosphorus limitation of bacterial growth in a small lake. Limnology and Oceanography 46: 108–120.CrossRefGoogle Scholar
  9. Caron, D. A., 1994. Inorganic nutrients, bacteria, and the microbial loop. Microbial Ecology 28: 295–298.CrossRefPubMedGoogle Scholar
  10. Chase, J. M. & M. A. Leibold, 2003. Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago.CrossRefGoogle Scholar
  11. Christian, B. W. & T. L. Lind, 2006. Key issues concerning Biolog use for aerobic and anaerobic freshwater bacterial community-level physiological profiling. International Review of Hydrobiology 91: 257–268.CrossRefGoogle Scholar
  12. Christian, B. W. & T. L. Lind, 2007. Multiple carbon substrate utilization by bacteria at the sediment-water interface: seasonal patterns in stratified eutrophic reservoir. Hydrobiologia 586: 43–56.CrossRefGoogle Scholar
  13. Cole, J. J., 1999. Aquatic microbiology for ecosystem scientists: new and recycled paradigms in ecological microbiology. Ecosystems 2: 215–225.CrossRefGoogle Scholar
  14. Comte, J. & P. A. del Giorgio, 2010. Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients. Ecology 91: 1466–1476.CrossRefPubMedGoogle Scholar
  15. Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 101–105.CrossRefGoogle Scholar
  16. Crossetti, L. O., V. Becker, L. S. Cardoso, L. R. Rodrigues, L. S. Costa & D. Motta-Marques, 2013. Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica 43: 157–163.CrossRefGoogle Scholar
  17. Crump, B. C., H. E. Adams, J. E. Hobbie & G. W. Kling, 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88: 1365–1378.CrossRefPubMedGoogle Scholar
  18. del Giorgio, P. A. & J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology, Evolution and Systematics 29: 503–541.CrossRefGoogle Scholar
  19. Dickerson, T. L. & H. N. Williams, 2014. Functional diversity of bacterioplankton in three North Florida freshwater lakes over an annual cycle. Microbial Ecology 67: 34–44.CrossRefPubMedGoogle Scholar
  20. Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal component analysis of neighbor matrices (PCNM). Ecological Modelling 196: 483–493.CrossRefGoogle Scholar
  21. Eiler, A. & S. Bertilsson, 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology 6: 1228–1243.CrossRefPubMedGoogle Scholar
  22. Fisher, M. M. & E. W. Triplett, 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Applied and Environmental Microbiology 65: 4630–4636.PubMedPubMedCentralGoogle Scholar
  23. Fragoso Jr, C. R., D. M. L. Motta Marques, W. Collischonn, C. E. M. Tucci & E. H. van Nes, 2008. Modelling spatial heterogeneity of phytoplankton in Lake Mangueira, a large shallow subtropical lake in South Brazil. Ecological Modelling 219: 125–137.CrossRefGoogle Scholar
  24. Galand, P. E., E. O. Casamayor, D. L. Kirchman & C. Lovejoy, 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. Proceedings of the National Academy of Sciences of the USA 106: 22427–22432.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Green, J. & B. J. M. Bohannan, 2006. Spatial scaling of microbial diversity. Trends in Ecology & Evolution 21: 501–507.CrossRefGoogle Scholar
  26. Gross, J., 2003. Variance inflation factors. R News 1: 13–15.Google Scholar
  27. Grover, J. P. & T. H. Chrzanowski, 2000. Seasonal patterns of substrate utilization by bacterioplankton: case studies in four temperate lakes of different latitudes. Aquatic Microbial Ecology 23: 41–54.CrossRefGoogle Scholar
  28. Guckert, J. B., G. J. Carr, T. D. Johnson, B. G. Hamm, D. H. Davidson & Y. Kumagai, 1996. Community analysis by Biolog: curve integration for statistical analysis of active sludge microbial habitats. Journal of Microbiological Methods 27: 183–197.CrossRefGoogle Scholar
  29. Hillebrand, H., D. Dürseken, D. Kirschiel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  30. Höfle, M. G., H. Haas & K. Dominik, 1999. Seasonal dynamics of bacterioplankton community structure in a eutrophic lake as determined by 5S rRNA analysis. Applied and Environmental Microbiology 65: 3164–3174.PubMedPubMedCentralGoogle Scholar
  31. Horner-Devine, M. C., S. V. H. Leibold & B. J. M. Bohannan, 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecology Letters 6: 613–622.CrossRefGoogle Scholar
  32. Horner-Devine, M. C., M. Lage, J. B. Hughes & B. J. M. Bohannan, 2004. A taxa-area relationship for bacteria. Nature 432: 750–753.CrossRefPubMedGoogle Scholar
  33. Insam, H. & M. Goberna, 2004. Use of Biolog for the Community Level Physiological Profiling (CLPP) of environmental samples. Molecular Microbial Ecology Manual 4(01): 853–860.Google Scholar
  34. Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.Google Scholar
  35. Jones, S. E. & K. D. McMahon, 2009. Species-sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics. Environmental Microbiology 11: 905–913.CrossRefPubMedGoogle Scholar
  36. Jones, S. E., R. J. Newton & K. D. McMahon, 2009. Evidence for structuring of bacterial community composition by organic matter carbon source in temperate lakes. Environmental Microbiology 11: 2463–2472.CrossRefPubMedGoogle Scholar
  37. Jones, S. E., T. A. Cadkin, R. J. Newton & K. D. McMahon, 2012. Spatial and temporal scales of aquatic bacterial beta diversity. Frontiers in Microbiology 3: 318.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kamjunke, N., W. Böing & H. Voigt, 1997. Bacterial and primary production under hypertrophic conditions. Aquatic Microbial Ecology 13: 29–35.CrossRefGoogle Scholar
  39. Kan, J., M. T. Suzuki, K. Wang, S. E. Evans & F. Chen, 2007. High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake Bay. Applied and Environmental Microbiology 73: 6776–6789.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kent, A. D., S. E. Jones, A. C. Yannarell, J. M. Graham, G. H. Lauster, T. K. Kratz & E. W. Triplett, 2004. Annual Patterns in Bacterioplankton Community Variability in a Humic Lake. Microbial Ecology 48: 550–560.CrossRefPubMedGoogle Scholar
  41. Kent, A. D., S. E. Jones, G. H. Lauster, J. M. Graham, R. J. Newton & K. D. McMahon, 2006. Experimental manipulations of microbial food web interactions in a humic lake: shifting biological drivers of bacterial community structure. Environmental Microbiology 8: 1448–1459.CrossRefPubMedGoogle Scholar
  42. Kent, A. D., A. C. Yannarell, J. A. Rusak, E. W. Triplett & K. D. McMahon, 2007. Synchrony in aquatic microbial community dynamics. The ISME Journal 1: 38–47.CrossRefPubMedGoogle Scholar
  43. Korhonen, J. J., J. Soininen & H. Hillebrand, 2010. A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91: 508–517.CrossRefPubMedGoogle Scholar
  44. Langenheder, S. & H. Ragnarsson, 2007. The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 88: 2154–2161.CrossRefPubMedGoogle Scholar
  45. Lear, G., J. Bellamy, B. S. Case, J. E. Lee & H. L. Buckley, 2014. Fine-scale patterns in bacterial community composition and function within freshwater ponds. The ISME Journal 8: 1715–1726.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Amsterdam, Elsevier Science BV.Google Scholar
  47. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  48. Lindström, E. S., 2000. Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microbial Ecology 40: 104–113.PubMedGoogle Scholar
  49. Lindström, E. S. & S. Langenheder, 2012. Local and regional factors influencing bacterial community assembly. Environmental Microbiology Reports 4: 1–9.CrossRefPubMedGoogle Scholar
  50. Lindström, E. S., M. K.-V. Agterveld & G. Zwart, 2005. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Applied and Environmental Microbiology 71: 8201–8206.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Liu, L., J. Yang, Z. Yu & D. M. Wilkinson, 2015. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. The ISME Journal 9: 2068–2077.CrossRefPubMedGoogle Scholar
  52. Logue, J. B. & E. S. Lindström, 2010. Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints. The ISME Journal 4: 729–738.CrossRefPubMedGoogle Scholar
  53. Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The invert microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  54. Lyons, M. M. & F. C. Dobbs, 2012. Differential utilization of carbon substrates by aggregate-associated and water-associated heterotrophic bacterial communities. Hydrobiologia 686: 181–193.CrossRefGoogle Scholar
  55. Mackereth, F. J. H., J. Heron & J. F. Talling, 1989. Water Analysis: Some Revised Methods for Limnologists, 2nd ed. Freshwater Biological Association, Ambleside.Google Scholar
  56. Mantel, N. A., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.PubMedGoogle Scholar
  57. Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvreas, A.-L. Reysenbach, V. H. Smith & J. T. Staley, 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4: 102–112.CrossRefPubMedGoogle Scholar
  58. Oksanen, J., G. B. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O´Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. vegan: Community Ecology Package. R package version 2.0-9. http://CRAN.R-project.org/package=vegan.
  59. Pace, N. R. A., 1997. Molecular view of microbial diversity and the biosphere. Science 276: 734–740.CrossRefPubMedGoogle Scholar
  60. Palmer, F. E., R. D. Methot Jr & J. T. Staley, 1967. Patchiness in the distribution of planktonic heterotrophic bacteria in lakes. Applied and Environmental Microbiology 31: 1003–1005.Google Scholar
  61. Parnell, J. J., G. Rompato, L. C. Latta IV, M. E. Pfrender, J. D. van Nostrand, J. Zou, G. Andersen, P. Champine, B. Ganesan & B. C. Weimer, 2010. Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS One 5(9): e12919. doi:10.1371/journal.pone.0012919.CrossRefPubMedPubMedCentralGoogle Scholar
  62. R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  63. Ramette, A., 2007. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology 62: 142–160.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Reche, I., E. Pulido-Villena, R. Morales-Baquero & E. O. Casamayor, 2005. Does ecosystem size determine aquatic bacterial richness? Ecology 86: 1715–1722.CrossRefGoogle Scholar
  65. Rodrigues, L. R., D. Motta Marques & N. F. Fontoura, 2015. Fish community in a large coastal subtropical lake: how an environmental gradient may affect the structure of trophic guilds. Limnetica 34: 495–506.Google Scholar
  66. Saad, J. F., M. R. Schiaffino, A. Vinocur, I. O’Farrell, G. Tell & I. Izaguirre, 2013. Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features. Journal of Plankton Research 35: 1220–1233.CrossRefGoogle Scholar
  67. Sala, M. M., J. Pinhassi & J. M. Gasol, 2006. Estimation of bacterial use of dissolved organic nitrogen compounds in aquatic ecosystems using Biolog plates. Aquatic Microbial Ecology 42: 1–5.CrossRefGoogle Scholar
  68. Salomo, S., C. Münch & I. Röske, 2009. Evaluation of the metabolic diversity of microbial communities in four different filter layers of a constructed wetland with vertical flow by Biolog analysis. Water Research 43: 4569–4578.CrossRefPubMedGoogle Scholar
  69. Schiaffino, M. R., F. Unrein, J. M. Gasol, R. Massana, V. Balagué & I. Izaguirre, 2011. Bacterial community structure in a latitudinal gradient of lakes: the role of spatial versus environmental factors. Freshwater Biology 56: 1973–1991.CrossRefGoogle Scholar
  70. Severin, I., Ö. Östman & E. S. Lindström, 2013. Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition. PLoS One 8(12): e80825. doi:10.1371/journal.pone.0080825.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Shade, A., S. E. Jones & K. D. McMahon, 2008. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environmental Microbiology 10: 1057–1067.CrossRefPubMedGoogle Scholar
  72. Sokal, R. R. & F. J. Rolf, 1995. Biometry, 3rd ed. W. H. Freeman and Company, New York.Google Scholar
  73. Sommaruga, R. & E. O. Casamayor, 2008. Bacterial ‘cosmopolitanism’ and importance of local environmental factors for community composition in remote high-altitude lakes. Freshwater Biology 54: 994–1005.CrossRefGoogle Scholar
  74. Souffreau, C., K. van der Gucht, I. van Gremberghe, S. Kosten, G. Lacerot, L. M. Lobão, V. L. de Moraes Huszar, F. Roland, E. Jeppesen, W. Vyverman & L. De Meester, 2015. Environmental rather than spatial factors structure bacterioplankton communities in shallow lakes along a > 6000 km latitudinal gradient in South America. Environmental Microbiology 17: 2336–2351.CrossRefPubMedGoogle Scholar
  75. Stoecker, D. K., 1998. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. European Journal of Protistology 34: 281–290.CrossRefGoogle Scholar
  76. Strome, D. J. & M. C. Miller, 1978. Photolytic changes in dissolved humic substances. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 1248–1254.Google Scholar
  77. They, N.-H., D. M. Marques, E. Jeppesen & M. Søndergaard, 2010. Bacterioplankton in the littoral and pelagic zones of subtropical shallow lakes. Hydrobiologia 646: 311–326.CrossRefGoogle Scholar
  78. Tian, C., J. Tan, X. Wu, W. Ye, X. Liu, D. Li & H. Yang, 2009. Spatiotemporal transition of bacterioplankton diversity in a large shallow hypertrophic freshwater lake, as determined by denaturing gradient gel electrophoresis. Journal of Plankton Research 31: 885–897.CrossRefGoogle Scholar
  79. Tiquia, S. M., 2010. Metabolic diversity of the heterotrophic microorganisms and potential link to pollution of the Rouge River. Environmental Pollution 158: 1435–1443.CrossRefPubMedGoogle Scholar
  80. Unrein, F., R. Massana, L. Alonso-Saéz & J. M. Gasol, 2007. Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnology and Oceanography 52: 456–469.CrossRefGoogle Scholar
  81. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilung der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  82. Vadeboncoeur, Y., G. Peterson, M. Jake, V. Zanden & J. Kalfe, 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89: 2542–2552.CrossRefPubMedGoogle Scholar
  83. Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J.-M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman & L. De Meester, 2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences of the USA 104: 20404–20409.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wu, Q. L., G. Zwart, J. Wu, M. P. K-v, S. Liu Agterveld & M. W. Hahn, 2007. Submersed macrophytes play a key role in structuring bacterioplankton community composition in the large, shallow, subtropical Taihu Lake, China. Environmental Microbiology 9: 2765–2774.CrossRefPubMedGoogle Scholar
  85. Yannarell, A. C. & E. W. Triplett, 2004. Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Applied and Environmental Microbiology 70: 214–223.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yannarell, A. C. & E. W. Triplett, 2005. Geographic and environmental sources of variation in lake bacterial community composition. Applied and Environmental Microbiology 71: 227–239.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yannarell, A. C., A. D. Kent, G. H. Lauster, T. K. Kratz & E. W. Triplett, 2003. Temporal patterns in bacterial communities in three temperate lakes of different trophic status. Microbial Ecology 46: 391–405.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marla Sonaira Lima
    • 1
  • David da Motta Marques
    • 1
  • Ng Haig They
    • 2
  • Katherine D. McMahon
    • 3
  • Lúcia Ribeiro Rodrigues
    • 1
  • Luciana de Souza Cardoso
    • 4
  • Luciane Oliveira Crossetti
    • 5
  1. 1.Laboratório de Ecotecnologia e Limnologia Aplicada, Instituto de Pesquisas Hidráulicas - IPHUniversidade Federal do Rio Grande do Sul/UFRGSPorto AlegreBrazil
  2. 2.Laboratorio de Limnologia, Departamento de Oceanografia e LimnologiaUniversidade Federal do Rio Grande do Norte/UFRNNatalBrazil
  3. 3.Departments of Civil and Environmental Engineering and BacteriologyUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Departamento de Botânica, Instituto de BiociênciasUniversidade Federal do Rio Grande do Sul/UFRGSPorto AlegreBrazil
  5. 5.Departamento de Ecologia, Instituto de BiosciênciasUniversidade Federal do Rio Grande do Sul/UFRGSPorto AlegreBrazil

Personalised recommendations