, Volume 814, Issue 1, pp 19–30 | Cite as

Combined effect of elevated CO2 level and temperature on germination and initial growth of Montrichardia arborescens (L.) Schott (Araceae): a microcosm experiment

  • Aline LopesEmail author
  • Aurélia Bentes Ferreira
  • Pauline Oliveira Pantoja
  • Pia Parolin
  • Maria Teresa Fernandez Piedade


IPCC predictions indicate an increase in temperatures by 1.5–7°C in some Amazonian regions during the twenty-first century. These changes could disrupt the present distribution patterns of organisms, including wetland plant species. In this work, we determined in microcosms the effects of scenarios combining elevated temperature and atmospheric CO2 concentration on the germination and initial growth of the arborescent Amazonian aquatic macrophyte Montrichardia arborescens. Seeds were germinated, and seedlings produced were monitored over a 5-month period in four microcosms: Control: ambient temperature and CO2 level; Mild: Control + 1.5°C and + 200 ppm CO2; intermediate: control + 2.5°C and + 400 ppm CO2; Extreme: Control + 4.5°C and + 850 ppm of CO2. Rapid light response curves and Fv/Fm values taken in seedlings showed a decrease in electron transportation rate with CO2 and temperature elevation. Mild and Intermediate treatments stimulated biomass production; Extreme treatment and Control produced similar results. The severe climatic changes expected in the future may negatively influence carbon accumulation in M. arborescens. Since aquatic macrophytes in Amazonian wetlands and wetlands worldwide are key plant species, further studies are needed to predict their fate in a global change perspective.


Amazonian floodplains Nutrient poor black-water Igapó Aquatic macrophytes Physiology Climate change 



This work was supported by INCT ADAPTA—Brazilian Ministry of Science, Technology and Innovation (CNPq/FAPEAM), Universal CNPq (14/2009; 14/2011), PELD MAUA (CNPq/FAPEAM) and FAPEAM EDITAL N. 017/2014—FIXAM/AM Nº Processo: 062.01174/2015 to Dr. Aline Lopes. The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Doctorate Grant awarded to Aline Lopes and MAUA Research Group, Laboratório de Ecofisiologia e Evolução (LEEM) for logistical and technical support. Dr. A. Leyva helped with English editing of the manuscript.


  1. Aidar, M. P. M., C. A. Martinez, A. C. Costa, P. M. F. Costa, S. M. C. Dietrich & M. S. Buckeridge, 2002. Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá, Hymenaea courbaril L. Biota Neotropica 2: 1–10.CrossRefGoogle Scholar
  2. Ainsworth, E. A., P. A. Davey, C. J. Bernacchi, O. C. Dermody, E. A. Heaton, D. J. Moore & S. P. Long, 2002. A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology 8: 695–709.CrossRefGoogle Scholar
  3. Allen, S. G., S. B. Idso & B. A. Kimball, 1990. Interactive effects of CO2 and environment on net photosynthesis of water-lily. Agriculture, Ecosystems & Environment 30: 81–88.CrossRefGoogle Scholar
  4. Baker, J. T., L. H. Jr & K. J. Boote Allen, 1990. Growth and yield responses of rice to carbon dioxide concentration. Journal of Agricultural Science 115: 313–320.CrossRefGoogle Scholar
  5. Bazzaz, F. A., 1990. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematic 21: 67–96.CrossRefGoogle Scholar
  6. Beer, S., M. Björk, R. Gademann & P. J. Ralph, 2001. Measurement of photosynthesis in seagrasses. In Short, F. T. & R. Coles (eds), Global Seagrass Research Methods. Elsevier Publishers, Amsterdam: 183–198.CrossRefGoogle Scholar
  7. Bolhár-Nordenkampf, H. R. & M. Götzl, 1992. Chlorophyllfluoreszenz als Indikator der mit Seehöhe zunehmenden Streßbelastung von Fichtennadeln. FBVA Berichte Schriftenreihe der Forstlichen Bundesveranstaltungen 67: 119–131.Google Scholar
  8. Bowes, G., 1993. Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Physiology and Plant Molecular Biology 44: 309–332.CrossRefGoogle Scholar
  9. Bowes, G., 1996. Photosynthetic responses to changing atmospheric carbon dioxside concentration. In Baker, N. R. (ed.), Photosynthesis and the Environment. Kluwer Academic Publisher, Dordrecht: 387–407.Google Scholar
  10. Carvalho, N. M. & J. Nakagawa, 2000. Sementes: Ciência, Tecnologia e Produção. FUNEP, Jaboticabal: 588.Google Scholar
  11. Chen, D. X., M. B. Coughenour, D. Eberts & J. S. Thullen, 1994. Interactive effects of CO2 enrichment and temperature on the growth of dioecious Hydrilla verticillata. Environmental and Experimental Botany 34: 345–353.CrossRefGoogle Scholar
  12. Cochrane, M. A. & W. F. Laurance, 2002. Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology 18: 311–325.CrossRefGoogle Scholar
  13. De Simone, O., E. Müller, W. J. Junk & W. Schmidt, 2002. Adaptations of Central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Plant Biology 4: 515–522.CrossRefGoogle Scholar
  14. Edwards, A. J., 1995. Impact of climatic change on coral reefs, mangroves, and tropical seagrass ecosystems. In Eisma, D. (ed.), Climate Change: impact on Coastal Habitation. CRC Press, Boca Raton: 209–234.Google Scholar
  15. Grotenhuis, T. P. & B. Bugbee, 1997. Super-optimal CO2 reduces seed yield but not vegetative growth in wheat. Crop Science 37: 1215–1222.CrossRefPubMedGoogle Scholar
  16. Hartz-Rubin, J. S. & E. H. DeLucia, 2001. Canopy development of a model herbaceous community exposed to elevated atmospheric CO2 and soil nutrients. Physiologia Plantarum 113: 258–266.CrossRefPubMedGoogle Scholar
  17. Hess, L. L., J. M. Melack, E. M. Novo, C. C. Barbosa & M. Gastil, 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404–428.CrossRefGoogle Scholar
  18. Idso, S. B., B. A. Kimball, M. G. Anderson & J. R. Mauney, 1987. Effects of atmospheric CO2 enrichment on plant growth: the interactive role of air temperature. Agriculture, Ecosystems & Environment 20: 1–10.CrossRefGoogle Scholar
  19. IPCC, 2007: Climate Change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri, R. K & A. Reisinger. (eds), IPCC, Geneva.Google Scholar
  20. IPCC, 2013: Climate change 2013: The physical science basis. In Stocker T. F, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (eds), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  21. Jenkins, G., R. Betts, M. Collins, D. Griggs, J. Lowe & R. Wood, 2005. Stabilizing climate to avoid dangerous climate change—a summary of relevant research at the Hadley Centre: Department for Environment Food a Rural Affairs, Met Office Hadley Centre, Exeter: 16Google Scholar
  22. Junk, W. J. & C. Howard-Williams, 1984. Ecology of aquatic macrophytes in Amazonia. In Sioli, H (ed.), The Amazon: limnology and Landscape Ecology of a Mighty Tropical River and its Basin. Dr. W. Junk Publishers, Dordrecht 10: 269–293.Google Scholar
  23. Junk, W. J. & M. T. F. Piedade, 1997. Plant life in the floodplain with special reference to herbaceous plants. In Junk, W. J. (ed.), The Central Amazon Floodplain. Springer, Berlin: 147–185.CrossRefGoogle Scholar
  24. Junk, W. J. & M. T. F. Piedade, 1993. Biomass and primary production of herbaceous plants communities in the Amazon floodplain. Hydrobiologia 263: 155–162.CrossRefGoogle Scholar
  25. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  26. Khurana, E. & J. S. Singh, 2001. Ecology of seed and seedling growth for conservation and restauration of tropical dry forest: a review. Conservation Biology 28: 39–52.Google Scholar
  27. Koch, M. S., S. A. Schopmeyer, C. Kyhn-Hansen, C. J. Madden & J. S. Peters, 2007. Tropical seagrass species tolerance to hypersalinity stress. Aquatic Botany 86: 14–24.CrossRefGoogle Scholar
  28. Krause, G. H. & E. Weis, 1991. Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Biology 42: 313–349.CrossRefGoogle Scholar
  29. Labouriau, L. G., 1983. A germinação das sementes. Organização dos Estados Americanos. Programa Regional de Desenvolvimento Científico e Tecnológico. Série de Biologia. Monografia 24.Google Scholar
  30. Lewis, S. L., P. M. Brando, O. L. Phillips, G. M. van der Heijden & D. Nepstad, 2011. The 2010 Amazon drought. Science 331: 554.CrossRefPubMedGoogle Scholar
  31. Lopes, A., P. Parolin & M. T. F. Piedade, 2015. Morphological and physiological traits of aquatic macrophytes respond to water chemistry in the Amazon Basin: an example of the genus Montrichardia Crueg (Araceae). Hydrobiologia. doi: 10.1007/s10750-015-2431-x.Google Scholar
  32. Lopes, A., F. Wittmann, J. Schöngart & M. T. F. Piedade, 2014. Herbáceas aquáticas em seis igapós na amazônia central: composição e diversidade de gêneros. Revista Geográfica Acadêmica 8: 5–17.CrossRefGoogle Scholar
  33. Maguire, J. D., 1962. Speed of germination-aid in selection and evaluation of seedling emergence and vigour. Crop Science 2: 176–177.CrossRefGoogle Scholar
  34. Malhi, Y., L. E. O. Aragão, D. B. Metcalfe, R. Paiva, C. A. Quesada, S. Almeida & L. M. Teixeira, 2009a. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology 15: 1255–1274.CrossRefGoogle Scholar
  35. Malhi, Y., L. E. O. Aragão, D. Galbraith, C. Huntingford, R. Fisher, P. Zelazowski & P. Meir, 2009b. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences 106: 20610–20615.CrossRefGoogle Scholar
  36. Maxwell, K. & G. N. Johnson, 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 5: 659–668.CrossRefGoogle Scholar
  37. Morison, J. & D. Lawlor, 1999. Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell and Environment 44: 659–682.CrossRefGoogle Scholar
  38. Nobre, C. A., G. Sampaio & L. Salazar, 2007. Mudanças climáticas e Amazônia. Ciência e Cultura 59: 22–27.Google Scholar
  39. Norby, R. J., 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant and Soil 165: 9–20.CrossRefGoogle Scholar
  40. Nordenkampf, H. R. & G. Öquist, 1993. Chlorophyll fluorescence as a tool in photosynthesis research. In Hall, D. O., J. M. O. Scurlock, H. R. Nordenkampf, R. C. Leegood & S. P. Long (eds), Photosynthesis and Production in a Changing Environment. Chapman and Hall, London: 193–206.Google Scholar
  41. Ojala, A., P. Kankaala & T. Tulonen, 2002. Growth response of Equisetum fluviatile to elevated CO2 and temperature. Environmental and Experimental Botany 47: 157–171.CrossRefGoogle Scholar
  42. Oyama, M. D. & C. A. Nobre, 1999. A new climate-vegetation equilibrium state for tropical South America. Geophysical Research Letters 30: 2199–2203.Google Scholar
  43. Parolin, P., 2001. Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128: 326–335.CrossRefPubMedGoogle Scholar
  44. Pepper, W. J., W. Barbour, A. Sankovski & B. Braaz, 1998. No-policy greenhouse gas emission scenarios: revisiting IPCC 1992. Environmental Science & Policy 1: 289–311.CrossRefGoogle Scholar
  45. Perez-Garcia, F. & M. E. Gonzalez-Benito, 2006. Seed germination of five Helianthemum species: Effect of temperature and presowing treatments. Journal of Arid Environments 65: 688–693.CrossRefGoogle Scholar
  46. Piedade, M. T. F. & W. J. Junk, 2000. Natural herbaceous plant communities in the Amazon floodplains and their use. In Junk, W. J., J. Ohly, M. T. F. Piedade & M. G. M. Soares (eds), The Central Amazon Floodplain: actual Use and Options for a Sustainable Management. Backhuys Publishers, Leiden: 269–290.Google Scholar
  47. Piedade, M. T. F., W. Junk, S. A. D’Ângelo, F. Wittmann, J. Schöngart, K. M. D. N. Barbosa & A. Lopes, 2010. Aquatic herbaceous plants of the Amazon floodplains: state of the art and research needed. Acta Limnologica Brasiliensia 22: 165–178.CrossRefGoogle Scholar
  48. Piedade, M. T. F., J. Schöngart, F. Wittmann, P. Parolin & W. J. Junk, 2013. Impactos da inundação e seca na vegetação de áreas alagáveis amazônicas. In Borma, L. S. & C. Nobre (eds), Secas na Amazônia: causas e Consequências. Oficina de Textos, São Paulo: 268–305.Google Scholar
  49. Piedade, M. T. F., M. Worbes & W. J. Junk, 2001. Geo-ecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. In McClain, M. E., R. L. Victoria & J. Richey (eds), The Biogeochemistry of the Amazon Basin. Oxford University Press, Oxford: 209–233.Google Scholar
  50. Poorter, H., 1993. Interspecific variation in the growth reduction to long-term elevated CO2 in winter wheat. Vegetatio 104(105): 77–97.CrossRefGoogle Scholar
  51. Rawson, H. M., 1992. Plant responses to temperature under conditions of elevated CO2. Australian Journal of Botany 40: 473–490.CrossRefGoogle Scholar
  52. Reddy, V. R., K. R. Reddy & H. F. Hodges, 1995. Carbon-dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Research 41: 13–23.CrossRefGoogle Scholar
  53. Rogers, H. H., W. W. Heck & A. S. Heagle, 1983. A field technique for the study of plant responses to elevated carbon dioxide concentrations. Journal of the Air Pollution Control Association 33: 42–44.CrossRefGoogle Scholar
  54. Schimel, D., I. G. Enting, M. Heimann, T. M. L. Wigley, D. Raynaud, D. Alves & U. Siegenthaler, 2000. CO2 and the carbon cycle (extracted from the intergovernmental panel on climate change (IPCC) report, “climate change, 1994”. In Wigley, T. M. L. & D. S. Schimel (eds), The Carbon Cycle. Cambridge University Press, Cambridge: 1–37.Google Scholar
  55. Schmidt, L., 2007. Tropical Forest Seed. DFSC, Dinamarca: 421.CrossRefGoogle Scholar
  56. Schreiber, U., R. Gademann, P. J. Ralph & A. W. D. Larkum, 1997. Assessment of photosynthetic performance of Prochloron in Lissoclinum patella by in situ and in hospite chlorophyll fluorescence measurements. Plant and Cell Physiology 38: 945–951.CrossRefGoogle Scholar
  57. Short, F. & H. Neckles, 1999. The effects of global climate change on seagrasses. Aquatic Botany 63: 169–196.CrossRefGoogle Scholar
  58. Sioli, H., 1984. The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In The Amazon. Springer, Dordrecht 127–165.Google Scholar
  59. Systat Inc. 2007.SYSTAT 12 SYSTAT Software Inc.Google Scholar
  60. Tian, H., J. M. Mellilo, D. W. Kicklighter, A. D. McGuire, J. V. K. Helfrich, B. Moore & C. J. Vörösmarty, 1998. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396: 664–667.CrossRefGoogle Scholar
  61. Turcq, B., R. C. Cordeiro, A. Sifeddine, F. F. Simoes-Filho, J. J. Abrão, F. B. O. Oliveira, A. O. Silva, J. L. Capitaneo & F. A. K. Lima, 2002. Carbon storage in Amazonia during the LGM: data and uncertainties. Chemosphere 49: 821–835.CrossRefPubMedGoogle Scholar
  62. Vasconcelos, S. S. D., P. M. Fearnside, P. M. L. D. A. Graça, E. M. Nogueira, L. C. D. Oliveira & E. O. Figueiredo, 2013. Forest fires in southwestern Brazilian Amazonia: estimates of area and potential carbon emissions. Forest Ecology and Management 291: 199–208.CrossRefGoogle Scholar
  63. Waldhoff, D., W. Junk, & B. Furch, 2000. Fluorescence measurements as indicator of adaptation strategies in an abundant tree species from central amazonian floodplain forests. In Lieberei, R., H. Bianchi, V. Boehm & C. Reisdorff (eds), Neotropical Ecosystems: proceedings of the German-Brazilian Workshop, Geesthacht: GKSS-Forschungszentrumpp, Hamburg 573–577.Google Scholar
  64. Wang, D., S. A. Heckathorn, X. Wang & S. M. Philpott, 2012. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169: 1–13.CrossRefPubMedGoogle Scholar
  65. Wetzel, R. G. & J. B. Grace, 1983. Aquatic plant communities. In Lemon, E. R. (ed.), CO2 and Plants: the Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. AAAS Selected Symposium 83, Boulder, Colorado 223–280.Google Scholar
  66. Wheeler, T. R., G. Batts, R. Ellis, P. Hadley & J. Morison, 1996. Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. The Journal of Agricultural Science 127: 37–48.CrossRefGoogle Scholar
  67. White, A. J. & C. Critchley, 1999. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research 59: 63–72.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aline Lopes
    • 1
    Email author
  • Aurélia Bentes Ferreira
    • 2
  • Pauline Oliveira Pantoja
    • 3
  • Pia Parolin
    • 4
  • Maria Teresa Fernandez Piedade
    • 2
  1. 1.Graduate Program in Ecology. Instituto Nacional de Pesquisas da Amazônia/ Grupo MAUA “Ecologia, Monitoramento e Uso Sustentável de Áreas Úmidas”ManausBrazil
  2. 2.Instituto Nacional de Pesquisas da Amazônia, CDAM/ Grupo MAUA “Ecologia, Monitoramento e Uso Sustentável de Áreas Úmidas”ManausBrazil
  3. 3.Biological & Environmental SciencesUniversity of StirlingStirlingUK
  4. 4.Dept. of Biodiversity, Evolution and Ecology of Plants, Biocentre Klein FlottbekUniversity of HamburgHamburgGermany

Personalised recommendations