, Volume 783, Issue 1, pp 37–46 | Cite as

Ontogenetic dynamics of infection with Diphyllobothrium spp. cestodes in sympatric Arctic charr Salvelinus alpinus (L.) and brown trout Salmo trutta L.

  • Eirik H. Henriksen
  • Rune Knudsen
  • Roar Kristoffersen
  • Armand M. Kuris
  • Kevin D. Lafferty
  • Anna Siwertsson
  • Per-Arne Amundsen


The trophic niches of Arctic charr and brown trout differ when the species occur in sympatry. Their trophically transmitted parasites are expected to reflect these differences. Here, we investigate how the infections of Diphyllobothrium dendriticum and D. ditremum differ between charr and trout. These tapeworms use copepods as their first intermediate hosts and fish can become infected as second intermediate hosts by consuming either infected copepods or infected fish. We examined 767 charr and 368 trout for Diphyllobothrium plerocercoids in a subarctic lake. The prevalence of D. ditremum was higher in charr (61.5%) than in trout, (39.5%), but the prevalence of D. dendriticum was higher in trout (31.2%) than in charr (19.3%). Diphyllobothrium spp. intensities were elevated in trout compared to charr, particularly for D. dendriticum. Large fish with massive parasite burdens were responsible for the high Diphyllobothrium spp. loads in trout. We hypothesize that fish prey may be the most important source for the Diphyllobothrium spp. infections in trout, whereas charr predominantly acquire Diphyllobothrium spp. by feeding on copepods. Our findings support previous suggestions that the ability to establish in a second piscine host is greater for D. dendriticum than for D. ditremum.


Trophic transmission Predation Paratenic host Interactive segregation 



Thanks are due to the technical staff and students of the Freshwater Ecology Group at UiT The Arctic University of Norway, for invaluable help during the field work over the years. We thank the guest editor, two anonymous referees and Dana Morton for their constructive comments. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. government. Financial support was provided by UiT The Arctic University of Norway and the Norwegian Research Council (NFR 213610/F20).


  1. Amundsen, P.-A., 1994. Piscivory and cannibalism in Arctic charr. Journal of Fish Biology 45: 181–189.CrossRefGoogle Scholar
  2. Amundsen, P.-A. & A. Klemetsen, 1988. Diet, gastric evacuation rates and food consumption in a stunted population of Arctic charr, Salvelinus alpinus L., in Takvatn, northern Norway. Journal of Fish Biology 33: 697–709.CrossRefGoogle Scholar
  3. Amundsen, P. -A., R. Knudsen & A. Klemetsen, 2008. Seasonal and ontogenetic variations in resource use by two sympatric Arctic charr morphs. Environmental Biology of Fishes 83: 45–55.CrossRefGoogle Scholar
  4. Amundsen, P.-A., K. D. Lafferty, R. Knudsen, R. Primicerio, A. Klemetsen & A. M. Kuris, 2009. Food web topology and parasites in the pelagic zone of a subarctic lake. Journal of Animal Ecology 78: 563–572.CrossRefPubMedGoogle Scholar
  5. Andersen, K. I. & D. I. Gibson, 1989. A key to three species of larval Diphyllobothrium Cobbold, 1858 (Cestoda: Pseudophyllidea) occurring in European and North American freshwater fishes. Systematic Parasitology 13: 3–9.CrossRefGoogle Scholar
  6. Bérubé, M. & M. A. Curtis, 1986. Transmission of Diphyllobothrium ditremum to Arctic Char (Salvelinus alpinus) in two Subarctic Quebec lakes. Canadian Journal of Fisheries and Aquatic Sciences 43: 1626–1634.CrossRefGoogle Scholar
  7. Blanar, C. A., M. A. Curtis & H. M. Chan, 2005. Growth, nutritional composition, and hematology of Arctic charr (Salvelinus alpinus) exposed to toxaphene and tapeworm (Diphyllobothrium dendriticum) larvae. Archives of Environmental Contamination and Toxicology 48: 397–404.CrossRefPubMedGoogle Scholar
  8. Bolnick, D. I., T. Ingram, W. E. Stutz, L. K. Snowberg, O. L. Lau & J. S. Paull, 2010. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proceedings of the Royal Society B: Biological Sciences 277: 1789–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bush, A. O., K. D. Lafferty, J. M. Lotz, A. W. Shostak, 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83: 575–583.CrossRefPubMedGoogle Scholar
  10. Bylund, G., 1972. Pathogenic effects of a diphyllobothriid plerocercoid on its host fishes. Commentationes Biologicae, Societas Scientiarum Fennica 58: 1–11.Google Scholar
  11. Curtis, M. A., 1984. Diphyllobothrium spp. and the Arctic charr: parasite acquisition and its effects on a lake-resident population In Johnson, L., & B. I. Burns (eds), Biology of the Arctic charr. Proceedings of the International Symposium on a Arctic charr, Winnipeg, Manitoba. University of Manitoba Press, Winnipeg, Manitoba: 395–411.Google Scholar
  12. Eloranta, A. P., R. Knudsen & P.-A. Amundsen, 2013. Niche segregation of coexisting Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) constrains food web coupling in subarctic lakes. Freshwater Biology 58: 207–221.CrossRefGoogle Scholar
  13. Finstad, A. G., P. A. Jansen & A. Langeland, 2000. Gillnet selectivity and size and age structure of an alpine Arctic char (Salvelinus alpinus) population. Canadian Journal of Fisheries and Aquatic Sciences 57: 1718–1727.CrossRefGoogle Scholar
  14. Frandsen, F., H. J. Malmquist & S. S. Snorrason, 1989. Ecological parasitology of polymorphic Arctic charr, Salvelinus alpinus (L.), in Thingvallavatn. Iceland. Journal of Fish Biology 34: 281–297.CrossRefGoogle Scholar
  15. Gallagher, C. P. & T. A. Dick, 2010. Trophic structure of a landlocked Arctic char Salvelinus alpinus population from southern Baffin Island, Canada. Ecology of Freshwater Fish 19: 39–50.CrossRefGoogle Scholar
  16. Halvorsen, O., 1970. Studies of the helminth fauna of Norway XV: on the taxonomy and biology of plerocercoids of Diphyllobothrium Cobbold, 1858 (Cestoda, Pseudophyllidea) from north-western Europe. Nytt Magasin for Zoologi 18: 113–174.Google Scholar
  17. Halvorsen, O. & K. Andersen, 1984. The ecological interaction between arctic charr, Salvelinus alpinus (L.), and the plerocercoid stage of Diphyllobothrium ditremum. Journal of Fish Biology 25: 305–316.CrossRefGoogle Scholar
  18. Halvorsen, O. & K. Wissler, 1973. Studies of the helminth fauna of Norway XXVIII: An experimental study of the ability of Diphyllobothrium latum (L.), D. dendriticum (Nitzsch), and D. ditremum (Creplin) (Cestoda, Pseudophyllidea) to infect paratenic hosts. Norwegian Journal of Zoology 21: 201–210.Google Scholar
  19. Hammar, J., 2000. Cannibals and parasites: Conflicting regulators of bimodality in high latitude Arctic char, Salvelinus alpinus. Oikos 88: 33–47.CrossRefGoogle Scholar
  20. Harrington, L. A., A. L. Harrington, N. Yamaguchi, M. D. Thom, P. Ferreras, T. R. Windham & D. W. Macdonald, 2009. The impact of native competitors on an alien invasive: Temporal niche shifts to avoid interspecific aggression? Ecology 90: 1207–1216.CrossRefPubMedGoogle Scholar
  21. Hechinger, R. F., K. D. Lafferty, T. C. Huspeni, A. J. Brooks & A. M. Kuris, 2007. Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos and fishes. Oecologia 151: 82–92.CrossRefPubMedGoogle Scholar
  22. Henricson, J., 1977. The abundance and distribution of Diphyllobothrium dendriticum (Nitzsch) and D. ditremum (Creplin) in the char Salvelinus alpinus (L.) in Sweden. Journal of Fish Biology 11: 231–248.CrossRefGoogle Scholar
  23. Klemetsen, A., P.-A. Amundsen, H. Muladal, S. Rubach & J. I. Solbakken, 1989. Habitat shifts in a dense, resident Arctic charr Salvelinus alpinus population. Physiology and Ecology, Japan 1(Supplement): 187–200.Google Scholar
  24. Klemetsen, A., P.-A. Amundsen, P. E. Grotnes, R. Knudsen, R. Kristoffersen & M.-A. Svenning, 2002. Takvatn through 20 years : long-term effects of an experimental mass removal of Arctic charr, Salvelinus alpinus, from a subarctic lake. Environmental Biology of Fishes 64: 39–47.CrossRefGoogle Scholar
  25. Klemetsen, A., P.-A. Amundsen, J. B. Dempson, B. Jonsson, N. Jonsson, M. F. O’Connel & E. Mortensen, 2003a. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.CrossRefGoogle Scholar
  26. Klemetsen, A., R. Knudsen, F. J. Staldvik & P.-A. Amundsen, 2003b. Habitat, diet and food assimilation of Arctic charr under the winter ice in two subarctic lakes. Journal of Fish Biology 62: 1082–1098.CrossRefGoogle Scholar
  27. Knudsen, R. & A. Klemetsen, 1994. Infections of Diphyllobothrium dendriticum, D. ditremum (Cestoda), and Cystidicola farionis (Nematoda) in a north Norwegian population of Arctic charr (Salvelinus alpinus) during winter. Canadian Journal of Zoology 72: 1922–1930.CrossRefGoogle Scholar
  28. Knudsen, R., A. Klemetsen & F. Staldvik, 1996. Parasites as indicators of individual feeding specialization in Arctic charr during winter in northern Norway. Journal of Fish Biology 48: 1256–1265.CrossRefGoogle Scholar
  29. Knudsen, R., M. A. Curtis & R. Kristoffersen, 2004. Aggregation of helminths: the role of feeding behavior of fish hosts. Journal of Parasitology 90: 1–7.CrossRefPubMedGoogle Scholar
  30. Knudsen, R., P.-A. Amundsen, R. Nilsen, R. Kristoffersen & A. Klemetsen, 2008. Food borne parasites as indicators of trophic segregation between Arctic charr and brown trout. Environmental Biology of Fishes 83: 107–116.CrossRefGoogle Scholar
  31. Knudsen, R., A. Siwertsson, C. E. Adams, J. Newton & P.-A. Amundsen, 2014. Similar patterns of individual niche use are revealed by different time-integrated trophic tracers (stable isotopes and parasites). Ecology of Freshwater Fish 23: 259–268.CrossRefGoogle Scholar
  32. Kristoffersen, R., 1993. Parasites in northern salmonids: effects of overpopulation and perturbations in systems with arctic charr (Salvelinus alpinus (L.)) and whitefish (Coregonus lavaretus L. sl) in northern Norway. PhD Thesis. University of Tromsø.Google Scholar
  33. Kuhn, J. A., R. Kristoffersen, R. Knudsen, R. Primicerio, & P.-A. Amundsen, 2015. Parasite communities of two three-spined stickleback populations in subarctic Norway—effects of a small spatial-scale host introduction. Parasitology Research 114: 1327–1339.CrossRefPubMedGoogle Scholar
  34. L’Abée-Lund, J. H., A. Langeland & H. Sægrov, 1992. Piscivory by brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) in Norwegian lakes. Journal of Fish Biology 41: 91–101.CrossRefGoogle Scholar
  35. L’Abée-Lund, J. H., A. Langeland, B. L. Jonsson, B. Jonsson & O. Ugedal, 1993. Spatial segregation by age and size in Arctic charr: a trade-off between feeding possibility and risk of predation. Journal of Animal Ecology 62: 160–168.CrossRefGoogle Scholar
  36. L’Abée-Lund, J. H., P. Aass & H. Sægrov, 2002. Long-term variation in piscivory in a brown trout population: effect of changes in available prey organisms. Ecology of Freshwater Fish 11: 260–269.CrossRefGoogle Scholar
  37. Langeland, A., J. H. L’Abée-Lund, B. Jonsson & N. Jonsson, 1991. Resource partitioning and niche shift in Arctic charr Salvelinus alpinus and brown trout Salmo trutta. Journal of Animal Ecology 60: 895–912.CrossRefGoogle Scholar
  38. Lester, R. J. G., 2012. Overdispersion in marine fish parasites. Journal of Parasitology 98: 718–721.CrossRefPubMedGoogle Scholar
  39. Locke, S. A., D. J. Marcogliese & E. T. Valtonen, 2014. Vulnerability and diet breadth predict larval and adult parasite diversity in fish of the Bothnian Bay. Oecologia 174: 253–262.CrossRefPubMedGoogle Scholar
  40. Marcogliese, D. J., 2002. Food webs and the transmission of parasites to marine fish. Parasitology 124: S83–S99.CrossRefPubMedGoogle Scholar
  41. Münster, J., S. Klimpel, H. O. Fock, K. MacKenzie, & T. Kuhn, 2015. Parasites as biological tags to track an ontogenetic shift in the feeding behaviour of Gadus morhua off West and East Greenland. Parasitology Research 114: 2723–2733.CrossRefPubMedGoogle Scholar
  42. Neuhäuser, M. & R. Poulin, 2004. Comparing parasite numbers between samples of hosts. Journal of Parasitology 90: 689–691.CrossRefPubMedGoogle Scholar
  43. Nilsson, N.-A., 1963. Interaction between trout and char in Scandinavia. Transactions of the American Fisheries Society 92: 276–285.CrossRefGoogle Scholar
  44. Pacala, S. & A. Dobson, 1988. The relation between the number of parasites/host and host age: population dynamic causes and maximum likelihood estimation. Parasitology 96: 197–210.CrossRefPubMedGoogle Scholar
  45. Persson, L., P.-A. Amundsen, A. M. De Roos, A. Klemetsen, R. Knudsen & R. Primicerio, 2007. Culling prey promotes predator recovery–alternative states in a whole-lake experiment. Science 316: 1743–1746.CrossRefPubMedGoogle Scholar
  46. Persson, L., P.-A. Amundsen, A. De Roos, R. Knudsen, R. Primicerio & A. Klemetsen, 2013. Density-dependent interactions in an Arctic char—brown trout system: competition, predation, or both? Canadian Journal of Fisheries and Aquatic Sciences 70: 610–616.CrossRefGoogle Scholar
  47. Poulin, R., 2000. Variation in the intraspecific relationship between fish length and intensity of parasitic infection: biological and statistical causes. Journal of Fish Biology 56: 123–137.CrossRefGoogle Scholar
  48. Poulin, R. & E. T. Valtonen, 2001. Interspecific associations among larval helminths in fish. International Journal for Parasitology 31: 1589–1596.CrossRefPubMedGoogle Scholar
  49. R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. URL
  50. Sánchez-Hernández, J. & P.-A. Amundsen, 2015. Trophic ecology of brown trout (Salmo trutta L.) in subarctic lakes. Ecology of Freshwater Fish 24: 148–161.CrossRefGoogle Scholar
  51. Sharp, G. J. E., A. W. Pike & C. J. Secombes, 1992. Sequential development of the immune response in rainbow trout [Oncorhynchus mykiss (Walbaum, 1792)] to experimental plerocercoid infections of Diphyllobothrium dendriticum (Nitzsch, 1824). Parasitology 104: 169–178.CrossRefPubMedGoogle Scholar
  52. Shaw, D. J. & A. P. Dobson, 1995. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111: S111–S127.CrossRefPubMedGoogle Scholar
  53. Strona, G. & K. D. Lafferty, 2013. Predicting what helminth parasites a fish species should have using parasite co-occurrence modeler (PaCo). Journal of Parasitology 99: 6–10.CrossRefPubMedGoogle Scholar
  54. Stutz, W. E., O. L. Lau & D. I. Bolnick, 2014. Contrasting patterns of phenotype-dependent parasitism within and among populations of three spine stickleback. The American Naturalist 183: 810–825.CrossRefPubMedGoogle Scholar
  55. Timi, J. T., M. A. Rossin, A. J. Alarcos, P. E. Braicovich, D. M. P. Cantatore & A. L. Lanfranchi, 2011. Fish trophic level and the similarity of non-specific larval parasite assemblages. International Journal for Parasitology 41: 309–316.CrossRefPubMedGoogle Scholar
  56. Valtonen, E. T., D. J. Marcogliese & M. Julkunen, 2010. Vertebrate diets derived from trophically transmitted fish parasites in the Bothnian Bay. Oecologia 162: 139–152.CrossRefPubMedGoogle Scholar
  57. Vik, R., 1964. The genus Diphyllobothrium: An example of the interdependence of systematics and experimental biology. Experimental Parasitology 15: 361–380.CrossRefPubMedGoogle Scholar
  58. Williams, H. H., K. MacKenzie & A. M. McCarthy, 1992. Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Reviews in Fish Biology and Fisheries 176: 144–176.CrossRefGoogle Scholar
  59. Woolhouse, M. E. J., 1998. Patterns in parasite epidemiology: the peak shift. Parasitology Today 14: 428–434.CrossRefPubMedGoogle Scholar
  60. Zelmer, D. A. & H. P. Arai, 1998. The contributions of host age and size to the aggregated distribution of parasites in yellow perch, Perca flavescens, from Garner Lake, Alberta, Canada. Journal of Parasitology 84: 24–28.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  2. 2.Department of Ecology, Evolution and Marine Biology, and Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraUSA
  3. 3.U.S. Geological Survey, Western Ecological Research Center, c/o Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations