Hydrobiologia

, Volume 786, Issue 1, pp 59–95 | Cite as

An Arctic and Subarctic ostracode database: biogeographic and paleoceanographic applications

  • Laura Gemery
  • Thomas M. Cronin
  • William M. BriggsJr.
  • Elisabeth M. Brouwers
  • Eugene I. Schornikov
  • Anna Stepanova
  • Adrian M. Wood
  • Moriaki Yasuhara
REMEMBERING RICK FORESTER

Abstract

A new Arctic Ostracode Database-2015 (AOD-2015) provides census data for 96 species of benthic marine Ostracoda from 1340 modern surface sediments from the Arctic Ocean and subarctic seas. Ostracoda is a meiofaunal, Crustacea group that secretes a bivalved calcareous (CaCO3) shell commonly preserved in sediments. Arctic and subarctic ostracode species have ecological limits controlled by temperature, salinity, oxygen, sea ice, food, and other habitat-related factors. Unique species ecology, shell chemistry (Mg/Ca ratios, stable isotopes), and limited stratigraphic ranges make them a useful tool for paleoceanographic reconstructions and biostratigraphy. The database, described here, will facilitate the investigation of modern ostracode biogeography, regional community structure, and ecology. These data, when compared to downcore faunal data from sediment cores, will provide a better understanding of how the Arctic has been affected by climatic and oceanographic change during the Quaternary. Images of all species and biogeographic distribution maps for selected species are presented, with brief discussion of representative species’ biogeographic and ecological significance. Publication of AOD-2015 is open-sourced and will be available online at several public websites with latitude, longitude, water depth, and bottom water temperature for most samples. It includes material from Arctic abyssal plains and submarine ridges, continental slopes, and shelves of the Kara, Laptev, East Siberian, Chukchi, Beaufort Seas, and several subarctic regions.

Keywords

Arctic Benthic Biogeography Crustacea Ecology Ostracoda 

Notes

Acknowledgments

We are grateful to the shipboard scientists and crews of cruises who obtained Arctic cores and samples that provided material for this database. We are also especially appreciative of the following colleagues who have freely and kindly provided material for ostracode study: P. Barnes, H. Bauch, P. Budgell, B. Caissie, L. Cooper, D. Darby, C. Didié, K. Dunton, R. Gradinger, A. Grantz, J. Grebmeier, I. Hardy, D. M. Hopkins, M. Jakobsson, A. Mackiewicz, J. Matthiessen, M. McCormick, C. H. Nelson, L. Osterman, B. Pelletier, L. Phillips, L. Polyak, R. Z. Poore, E. Reimnitz, R. Spielhagen, R. Stein, G. Vilks, F. Wagner, R. Whatley, J. Wollenburg. Special thanks to L. DeNinno for help with SEM photography, K. Lehnigk and J. Seidenstein for assistance with ArcGIS maps. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Supplementary material

10750_2015_2587_MOESM1_ESM.xls (1014 kb)
Supplementary material 1 (XLS 1014 kb)

References

  1. Arrigo, K. R. & G. L. van Dijken, 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research 116: C09011.Google Scholar
  2. Arrigo, K. R., G. L. van Dijken & S. Pabi, 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters 35(19): L19603.CrossRefGoogle Scholar
  3. Backman, J., M. Jakobsson, R. Løvlie, L. Polyak & L. A. Febo, 2004. Is the central Arctic Ocean a sediment starved basin? Quaternary Science Reviews 23: 1435.CrossRefGoogle Scholar
  4. Baker, J. H. & J. W. Wong, 1968. Paradoxostoma rostratum Sars (Ostracoda, Podocopida) as a commensal on the Arctic gammarid amphipods Gammaracanthus loricatus (Sabine) and Gammarus wilkitzkii Birula. Crustaceana 14: 307–311.CrossRefGoogle Scholar
  5. Barnard, J. L., 1959. Scientific studies of fletchers Ice Island, T-3 (1952–1955). Geophysical Research Paper 63: 115–152.Google Scholar
  6. Bassiouni, M. A. A., 1965. Über einige ostracoden aus dem interglazial von esbjerg. Bulletin of the Geological Society of Denmark 15(4): 507–519.Google Scholar
  7. Boyer, T. P., J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, T.D. O’Brien, C.R. Paver, J.R. Reagan, D. Seidov, I. V. Smolyar, & M. M. Zweng, 2013. World ocean database 2013, NOAA Atlas NESDIS 72, S. In Levitus, S. & A. Mishonov (eds), Silver Spring, MD, p 209. doi:10.7289/V5NZ85MT.
  8. Brouwers, E. M., 1990. Systematic paleontology of quaternary ostracode assemblages from the gulf of alaska: part 1. Families Cytherellidae, Bairdiidae, Cytheridae, Leptocytheridae, Limnocytheridae, Eucytheridae, Krithidae, Cushmanideidae. U.S. Geological Survey Professional Paper 1510: 1–40.Google Scholar
  9. Brouwers, E. M., 1993. Systematic paleontology of quaternary ostracode assemblages from the gulf of alaska: part 2. Families Trachyleberididae, Hemicytheridae, Loxoconchidae, Paracytheridae. U.S. Geological Survey Professional Paper 1531: 1–40.Google Scholar
  10. Brouwers, E. M., T. M. Cronin, D. J. Horne & A. R. Lord, 2000. Recent shallow marine ostracods from high latitudes: implications for late Pliocene and Quaternary palaeoclimatology. Boreas 29(2): 127–142.CrossRefGoogle Scholar
  11. Cronin, T. M., 1981. Paleoclimatic implications of Late Pleistocene marine ostracodes from the St. Lawrence Lowlands. Micropaleontology 27(4): 383–418.CrossRefGoogle Scholar
  12. Cronin, T. M., 1988. Paleozoogeography of postglacial ostracoda from northeastern North America. The late quaternary development of the champlain sea basin. Geological Association of Canada Special Paper 35: 125–144.Google Scholar
  13. Cronin, T. M., 1995a. Arctic ostracodes database. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 95-023. NOAA/NGDC Paleoclimatology Program, Boulder. ftp.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/cronin1995/.
  14. Cronin, T. M. & N. Ikeya, 1987. The Omma-Manganji ostracode fauna (Plio-Pleistocene) of Japan and the zoogeography of circumpolar species. Journal of Micropalaeontology 6: 65–88.CrossRefGoogle Scholar
  15. Cronin, T. M., W. M. Briggs Jr, E. M. Brouwers, R. C. Whatley, A. Wood & M. A. Cotton, 1991. Modern arctic podocopid ostracode database. United States Geological Survey Open-File Report 91–385: 1–51.Google Scholar
  16. Cronin, T. M., R. Whatley, A. Wood, A. Tsukagoshi, N. Ikeya, E. M. Brouwers & W. M. Briggs Jr, 1993. Microfaunal evidence for elevated Pliocene temperatures in the Arctic Ocean. Paleoceanography 8(2): 161–173.CrossRefGoogle Scholar
  17. Cronin, T. M., T. R. Holtz & R. C. Whatley, 1994. Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda. Marine Geology 119(3): 305–332.CrossRefGoogle Scholar
  18. Cronin, T. M., T. R. Holtz Jr, R. Stein, R. Spielhagen, D. Fütterer & J. Wollenburg, 1995b. Late Quaternary paleoceanography of the Eurasian Basin, Arctic Ocean. Paleoceanography 10(2): 259–281.CrossRefGoogle Scholar
  19. Cronin, T. M., L. Gemery, W. M. Briggs Jr, M. Jakobsson, L. Polyak & E. M. Brouwers, 2010a. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy. Quaternary Science Reviews 29(25): 3415–3429.CrossRefGoogle Scholar
  20. Cronin, T. M., L. Gemery, E. M. Brouwers, W. M. Briggs, Jr., A. Wood, A. Stepanova, E. I. Schornikov, J. Farmer & K. E. S. Smith, 2010b. Modern arctic ostracode database. IGBP PAGES/WDCA Contribution Series Number: 2010-081. ftp.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/cronin2010/cronin2010.txt.
  21. Cronin, T. M., L. Polyak, D. Reed, E. S. Kandiano, R. E. Marzen, E. A. Council, 2013. A 600-kyr Arctic sea-ice record from mendeleev ridge based on ostracodes. Quaternary Science Reviews 79: 157–167.CrossRefGoogle Scholar
  22. DeNinno, L. H., T. M. Cronin, J. Rodriguez-Lazaro & A. Brenner, 2015. An early to mid-Pleistocene deep Arctic Ocean ostracode fauna with North Atlantic affinities. Palaeogeography, Palaeoclimatology, Palaeoecology 419: 90–99.CrossRefGoogle Scholar
  23. Didié, C. & H. A. Bauch, 2000. Species composition and glacial-interglacial variations in the ostracode fauna of the northeast Atlantic during the past 200,000 years. Marine Micropaleontology 40(1): 105–129.CrossRefGoogle Scholar
  24. Didié, C., H. A. Bauch & J. P. Helmke, 2002. Late Quaternary deep-sea ostracodes in the polar and subpolar North Atlantic: paleoecological and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 184: 195–212.CrossRefGoogle Scholar
  25. Elofson, O., 1941. Zur Kenntnis der marinen Ostracoden Schwedens, mit besonderer Beruecksichtigung des Skagerraks. Zoologiska Bidrag fran Uppsala 19: 215–534.Google Scholar
  26. ESRI, 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands.Google Scholar
  27. Frenzel, P. & I. Boomer, 2005. The use of ostracods from marginal marine, brackish waters as bioindicators of modern and Quaternary environmental change. Palaeogeography, Palaeoclimatology, Palaeoecology 225: 68–92.CrossRefGoogle Scholar
  28. Gemery, L., T. M. Cronin, L. W. Cooper & J. M. Grebmeier, 2013. Temporal changes in benthic ostracode assemblages in the Northern Bering and Chukchi Seas from 1976 to 2010. Deep-Sea Research II 94: 68–79.CrossRefGoogle Scholar
  29. Grebmeier, J. M., 2012. Shifting patterns of life in the Pacific Arctic and Sub-Arctic seas. Annual Review of Marine Science 4: 63–78.CrossRefPubMedGoogle Scholar
  30. Grebmeier, J. M. J. E., S. E. Overland, E. V. Moore, E. C. Farley, L. W. Carmack, K. E. Cooper, J. H. Frey, F. A. McLaughlin & S. L. McNutt, 2006. A major ecosystem shift in the northern bering sea. Science 311(5766): 1461–1464.CrossRefPubMedGoogle Scholar
  31. Hartmann, G., 1992. Zur Kenntnis der rezenten und subfossilen Ostracoden des Liefdefjords (Nordspitzbergen, Svalbard).1. Teil. Mit einer Tabelle subfossil nachgewiesener Foraminiferen. Mitteilungen aus dem hamburgischen Zoologischen Museum und Institut 89: 181–225.Google Scholar
  32. Hazel, J., 1970. Ostracode zoogeography, nova scotian and virginian faunal provinces. U.S. Geological Survey Professional Paper 529: 1–21.Google Scholar
  33. Ikeya, N. & M. Shiozaki, 1993. Characteristics of the inner bay ostracodes around the Japanese islands—the use of ostracodes to reconstruct paleoenvironments. The Memoirs of the Geological Society of Japan 39: 15–32.Google Scholar
  34. Jeffries, M. O., J. E. Overland & D. K. Perovich, 2013. The Arctic shifts to a new normal. Physics Today 66(10): 35–40.CrossRefGoogle Scholar
  35. Ji, R., M. Jin & O. Varpe, 2013. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Global Change Biology 19(3): 734–741.CrossRefPubMedGoogle Scholar
  36. Jones, T. R., 1857. A Monograph of the Tertiary Entomostraca of England. Paleontographical Society, London: 1–68.Google Scholar
  37. Jones, R. L., R. C. Whatley, T. M. Cronin & H. J. Dowsett, 1999. Reconstructing late Quaternary deep-water masses in the eastern Arctic Ocean using benthonic Ostracoda. Marine Micropaleontology 37(3–4): 251–272.CrossRefGoogle Scholar
  38. Joy, J. A. & D. L. Clark, 1977. The distribution, ecology and systematics of the benthic Ostracoda of the central Arctic Ocean. Micropaleontology 23: 129–154.CrossRefGoogle Scholar
  39. Kornicker, L. S., 1988. Myodocopid ostracoda of the beaufort sea, Arctic Ocean. Smithsonian Contributions to Zoology 456: 1–40.CrossRefGoogle Scholar
  40. Kortsch, S., R. Primicerio, F. Beuchel, P. Renaud, J. Rodrigues, O. J. Lønne & B. Gulliksen, 2012. Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National Academy of Sciences 109: 14052–14057.CrossRefGoogle Scholar
  41. Lee, S. H., M. S. Yun, B. K. Kim, H. Joo, S.-H. Kang, C. K. Kang & T. E. Whitledge, 2013. Contribution of small phytoplankton to total primary production in the Chukchi Sea. Continental Shelf Research 68: 43–50.CrossRefGoogle Scholar
  42. Lev, O. M., 1972. Bionomic and paleogeographic conditions in the neogene–quaternary marine basins in the northern part of the USSR based on the ostracode fauna: the modern tectonics and paleogeography of the soviet arctic in the context of the estimation of mineral resources. Nauchno Issledovatel’skii Institut Geologii Arktiki, Trudy: 15–21.Google Scholar
  43. Li, W. K. W., F. A. McLaughlin, C. Lovejoy & E. C. Carmack, 2009. Smallest algae thrive as the Arctic Ocean freshens. Science 326(5952): 539.CrossRefPubMedGoogle Scholar
  44. Mackiewicz, A., 2006. Recent benthic Ostracoda from Hornsund, south Spitsbergen, Svalbard Archipelago. Polish Polar Research 27(1): 71–90.Google Scholar
  45. McDougall, K., E. Brouwers & P. Smith, 1986. Micropaleontology and sedimentology of the PB borehole series, Prudhoe Bay, Alaska. U.S Geological Survey Bulletin 1598: 1–62.Google Scholar
  46. Neale, J. W. & H. V. Howe, 1975. The marine Ostracoda of Russian Harbour, Novaya Zemlya and other high latitude faunas. Bulletin of American Paleontology 65(282): 381–431.Google Scholar
  47. Overland, J. E., M. Wang, J. E. Walsh & J. C. Stroeve, 2013. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2(2): 68–74.CrossRefGoogle Scholar
  48. Penney, D. N., 1989. Recent shallow marine Ostracoda of the Ikerssuak (Bredefjord) district. Southwest Greenland. Journal of Micropalaeontology 8(1): 55–75.CrossRefGoogle Scholar
  49. Petrenko, D., D. Pozdnyakov, J. Johannessen, F. Counillon & V. Sychov, 2013. Satellite-derived multi-year trend in primary production in the Arctic Ocean. International Journal of Remote Sensing 34: 3903–3937.CrossRefGoogle Scholar
  50. Poirier, R. K., T. M. Cronin, W. M. Briggs Jr & R. Lockwood, 2012. Central Arctic paleoceanography for the last 50kyr based on ostracode faunal assemblages. Marine Micropaleontology 88: 65–76.CrossRefGoogle Scholar
  51. Polyak, L., J. Bischof, J. D. Ortiz, D. A. Darby, J. E. T. Channell, C. Xuan, D. S. Kaufman, R. Løvlie, D. Schneider, R. Adler & E. Council, 2009. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global and Planetary Change 68: 5–17.CrossRefGoogle Scholar
  52. Post, E., U. S. Bhatt, C. M. Bitz, J. F. Brodie, T. L. Fulton, M. Hebblewhite, J. Kerby, S. J. Kutz, I. Stirling & D. A. Walker, 2013. Ecological consequences of sea ice decline. Science 341(6145): 519–524.CrossRefPubMedGoogle Scholar
  53. Sars, G. O., 1866. Oversigt af Norges marine Ostracoder. Forhandlinger i Videnskabsselskabet i Kristiania 17(1865): 1–130.Google Scholar
  54. Sars, G. O., 1922–1928. An account of the crustacea of norway volume IX, Ostracoda: Bergen Museum, Bergen.Google Scholar
  55. Schornikov, E. I., 1970. Acetabulastoma—a new genus of ostracodes, ectoparasites of Amphipoda. Zoologichesky Zhurnal 49: 132–1143. (in Russian).Google Scholar
  56. Schornikov, E. I., 2001. Class ostracoda, Orders platycopida and podocopida. In Sirenko, B. I. (ed.), List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explorations of the Fauna of the Seas. Vol. 51(59). St. Peterburg: 99–103 (in Russian).Google Scholar
  57. Schornikov, E. I., 2004a. Bottom ostracods (Crustacea, Ostracoda) of the Laptev Sea. In: Sirenko B. I. (ed.), Fauna and ecosystems of the Laptev Sea and adjacent deep waters of the Arctic Basin. Explorations of the Fauna of the Seas. Vol. 54(62). Part II. St. Peterburg: 58–70. (Appendix 2. List of benthic stations of different cruises in Arctic Ocean, 167–170) (in Russian).Google Scholar
  58. Schornikov, E. I., 2004b. Class ostracoda. In Sirenko, B. I. (ed.), Fauna and ecosystems of the Laptev Sea and adjacent deep waters of the Arctic Basin. Appendix 1. List of species of invertebrates of the Laptev Sea and adjacent areas, which is compiled mainly on the materials of last expeditions of 90th years of XX century. Explorations of the Fauna of the Seas. Vol. 54(62). Part II. St. Petersburg, 143–144 (in Russian).Google Scholar
  59. Schornikov, E. I. & M. A. Zenina, 2006. Benthic ostracod fauna of the Kara, Laptev and East-Siberian seas (data from the expeditions carried out by the Pacific Oceanography Institute of the Eastern Branch of the Russian Academy of Sciences). Proceedings of the Arctic Regional Center 4: 156–211.Google Scholar
  60. Schornikov, E. I., 2009. Class ostracoda. Subclass podocopa. In: Sirenko, B. I. (ed.), Ecosystems and bioresources of the Chukchi Sea and adjacent water areas. Appendix 2. List of species of invertebrates of the Chukchi Sea and the Bering Strait made generally on materials of expeditions 1976–2005. Explorations of the Fauna of the Seas. Vol. 64(72). St. Petersburg, 295–297 (in Russian).Google Scholar
  61. Schornikov, E. I., 2010. Class ostracoda. Order podocopida. In: Sirenko, B. I. (ed.), Fauna of the East-Siberian Sea, regularities of development and quantitative distribution of bottom ecosystems. Appendix 2. List of species of invertebrates of the East-Siberian Sea. Explorations of the Fauna of the Seas. Vol. 66(75). St. Petersburg, 265–272 (in Russian).Google Scholar
  62. Stepanova, A., E. Taldenkova & H. A. Bauch, 2003. Recent Ostracoda of the Laptev Sea (Arctic Siberia): taxonomic composition and some environmental implications. Marine Micropaleontology 48: 23–48.CrossRefGoogle Scholar
  63. Stepanova, A., E. Taldenkova & H. A. Bauch, 2004. Ostracod species of the genus Cytheropteron from Late Pleistocene, Holocene and Recent sediments of the Laptev Sea (Arctic Siberia). Revista Española de Micropaleontologia 36(1): 83–108.Google Scholar
  64. Stepanova, A. Y., 2006. Late Pleistocene-Holocene and recent Ostracoda of the Laptev Sea. Monograph. Suppl. Issue Russ. Paleontological Journal 40(2): S91–S204.Google Scholar
  65. Stepanova, A., E. Taldenkova, J. Simstich & H. A. Bauch, 2007. Comparison study of the modern ostracod associations in the Kara and Laptev seas: ecological aspects. Marine Micropaleontology 63(3): 111–142.CrossRefGoogle Scholar
  66. Stepanova, A., E. E. Taldenkova & H. A. Bauch, 2010. Arctic quaternary ostracods and their use in paleoreconstructions. Paleontological Journal 44(1): 41–48.CrossRefGoogle Scholar
  67. Stepanova, A., E. Taldenkova & H. A. Bauch, 2012. Ostracod palaeoecology and environmental change in the Laptev and Kara seas (Siberian Arctic) during the last 18,000 years. Boreas 41: 557–577.CrossRefGoogle Scholar
  68. Stephens, C., J. I. Antonov, T. P. Boyer, M. E. Conkright, R. A. Locarnini, T. D. O’Brien & H. E. Garcia, 2002. World ocean atlas 2001, volume 1: temperature. In S. Levitus (ed.), NOAA Atlas NESDIS 49, U.S. Government Printing Office, Washington, DC, p 167 CD-ROMs.Google Scholar
  69. Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Maslanik & A. P. Barrett, 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change 110(3–4): 1005–1027.CrossRefGoogle Scholar
  70. Stroeve, J. C., T. Markus, L. Boisvert, J. Miller & A. Barrett, 2014. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters 41(4): 1216–1225.CrossRefGoogle Scholar
  71. Taldenkova, E., H. A. Bauch, A. Stepanova, Y. Ovsepyan, I. Pogodina, T. Klyuvitkina & S. Nikolaev, 2013. Benthic and planktic community changes at the North Siberian margin in response to Atlantic water mass variability since last deglacial times. Marine Micropaleontology 99: 29–44.CrossRefGoogle Scholar
  72. Wassmann, P., C. M. Duarte, S. Agusti & M. K. Sejr, 2011. Footprints of climate change in the Arctic marine ecosystem. Global Change Biology 17(2): 1235–1249.CrossRefGoogle Scholar
  73. Whatley, R. C., 1982. Littoral and sublittoral ostracoda from sisimiut, West Greenland. In Fox, A.D., D.A. Stroud (eds), Report of the 1979 Greenland White-Fronted Goose Study Expedition to Equalunqmiut Nunat, Western Greenland. University of Wales Press: 269–284.Google Scholar
  74. Whatley, R. C. & M. P. Eynon, 1996. Four new Arctic deepwater ostracod species from East Greenland. Proceedings of the 2nd European Ostracodologists Meeting, Edinburgh: 195–200.Google Scholar
  75. Whatley, R. C. & D. G. Masson, 1979. The ostracod genus Cytheropteron from the quaternary and recent of great Britain. Revista Española de Micropaleontología 11: 223–277.Google Scholar
  76. Whatley, R. C., M. Eynon & A. Moguilevsky, 1996. Recent ostracoda of the Scoresby Sund fjord system. East Greenland. Revista Española de Micropaleontología 28(2): 5–23.Google Scholar
  77. Whatley, R. C., M. Eynon & A. Moguilevsky, 1998. The depth distribution of Ostracoda from the Greenland Sea. Journal of Micropalaeontology 17: 15–32.CrossRefGoogle Scholar
  78. Wood, A. M., 2009. The phylogeny and palaeozoogeography of cold-water species of ostracod (Crustacea) from the pre-ludhamian stage (Late Pliocene-Early Pleistocene), red crag formation, East Anglia, England; with reference to the earliest arrival of pacific species. Paleontological Research 13(4): 345–366.CrossRefGoogle Scholar
  79. Wood, A. M. & R. C. Whatley, 1994. Northeastern Atlantic and Arctic faunal provinces based on the distribution of Recent ostracod genera. The Holocene 4: 174–191.CrossRefGoogle Scholar
  80. Yasuhara, M. & H. Okahashi, 2014. Quaternary deep-sea ostracode taxonomy of ocean drilling program site 980, eastern North Atlantic Ocean. Journal of Paleontology 88(4): 770–785.CrossRefGoogle Scholar
  81. Yasuhara, M. & H. Okahashi, 2015. Late quaternary deep-sea ostracod taxonomy of the eastern North Atlantic Ocean. Journal of Micropalaeontology 34: 21–49.CrossRefGoogle Scholar
  82. Yasuhara, M., H. Okahashi & T. M. Cronin, 2009. Taxonomy of quaternary deep-sea ostracods from the western North Atlantic Ocean. Palaeontology 52: 879–931.CrossRefGoogle Scholar
  83. Yasuhara, M., G. Hunt, G. van Dijken, K. R. Arrigo, T. M. Cronin & J. E. Wollenburg, 2012. Patterns and controlling factors of species diversity in the Arctic Ocean. Journal of Biogeography 39(11): 2081–2088.CrossRefGoogle Scholar
  84. Yasuhara, M., A. Stepanova, H. Okahashi, T. M. Cronin & E. M. Brouwers, 2014a. Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean. Micropaleontology 60: 399–444.Google Scholar
  85. Yasuhara, M., M. Grimm, S. N. Brandão, A. Jöst, H. Okahashi, H. Iwatani, A. Ostman & P. Martínez Arbizu, 2014b. Deep-sea benthic ostracodes from multiple core and epibenthic sledge samples in Icelandic waters. Polish Polar Research 35(2): 341–360.CrossRefGoogle Scholar
  86. Yun, M. S., T. E. Whitledge, M. Kong & S. H. Lee, 2014. Low primary production in the Chukchi Sea shelf, 2009. Continental Shelf Research 76: 1–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2015

Authors and Affiliations

  1. 1.U.S. Geological SurveyRestonUSA
  2. 2.Institute of Arctic and Alpine Research (INSTAAR)University of ColoradoBoulderUSA
  3. 3.U.S. Geological SurveyDenverUSA
  4. 4.Zhirmunsky Institute of Marine BiologyRussian Academy of SciencesMoscowRussia
  5. 5.Department of OceanographyTexas A&M UniversityCollege StationUSA
  6. 6.School of Energy, Construction and EnvironmentCoventry UniversityCoventryEngland, UK
  7. 7.School of Biological SciencesThe University of Hong KongHong Kong SarChina

Personalised recommendations