Hydrobiologia

, Volume 778, Issue 1, pp 295–312 | Cite as

Inferring past environmental changes in three Turkish lakes from sub-fossil Cladocera

  • Ayşe İdil Çakıroğlu
  • Eti E. Levi
  • Ü. Nihan Tavşanoğlu
  • Gizem Bezirci
  • Şeyda Erdoğan
  • Nur Filiz
  • Thorbjørn Joest Andersen
  • Thomas A. Davidson
  • Erik Jeppesen
  • Meryem Beklioğlu
SHALLOW LAKES
  • 309 Downloads

Abstract

Cladocerans are increasingly used in palaeolimnological studies as their community composition is sensitive to both anthropogenic and natural forces in lakes. We present the results of a palaeolimnological investigation of three Turkish shallow lakes located in cold dry steppe and semi-dry Mediterranean climatic regions. The aim was to elucidate historical changes in environmental conditions by analysing sub-fossil cladocerans in 210Pb-dated sediment cores. Sub-fossil cladoceran remains from the surface sediment of 40 Turkish lakes were analysed to examine the environmental factors that most correlated with variation in the cladoceran assemblage. Redundancy analysis showed that salinity, macrophyte abundance, fish density, depth and total phosphorus were the most correlated with change in cladoceran assemblage composition with eigenvalues for the first and the second axes being λ1 = 0.312 and λ2 = 0.061, respectively. Sedimentary cladoceran assemblages from three cores were placed passively within the framework of the surface sediment ordination. The results reveal a prevalent impact of salinity, fish abundance and water level changes from the past to present. Thus, using cladoceran-based inferences, we traced key environmental changes related to variation in climate change, restoration and water level regulation over the last century.

Keywords

Fish abundance Macrophyte Salinity Water level change Eutrophication Palaeolimnology Irrigation 

References

  1. Abrantes, N., S. C. Altunes, M. J. Pereira & F. Gonçalves, 2006. Seasonal succession of cladocerans and phytoplankton and their interactions in shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologica 29(1): 54–64.CrossRefGoogle Scholar
  2. Akbulut (Emir), N. & A. Akbulut, 2002. The plankton composition of Lake Mogan in Central Anatolia. Zoology in the Middle East 27: 107–116.CrossRefGoogle Scholar
  3. Alp, A., 1997. The research of economic fish populations (Cyprinus carpio L., 1758 and Stizostedion lucioperca L., 1758) in Gölhisar Lake. PhD Thesis, Ege University: 68 pp.Google Scholar
  4. Altınbilek, D., N. Usul, H. Yazıcıoğlu, Y. Kutoğlu, N. Merzi, M. Göğüş, V. Doyuran & A. Günyaktı, 1995. Gölbaşı Mogan-Eymir Gölleri için su kaynakları ve çevre yönetim planı projesi. Technical Report No. 93-03-03-04-01. Middle East Technical University, Ankara (in Turkish).Google Scholar
  5. Amsinck, S. L., E. Jeppesen & F. Landkildehus, 2005. Inference of past changes in zooplankton community structure and planktivorous fish abundance from sedimentary subfossils – a study of a coastal lake subjected to major fish kill incidents during the past century. Archiv für Hydrobiologie 162: 363–382.CrossRefGoogle Scholar
  6. Anaç, D. & B. Ç. Esetlili, 2012. Türkiye’de Toprak Verimliliğinin Gelişimi ve Tarihçesi. Journal of Soil Science and Plant Nutrition 1: 20–22. (in Turkish).Google Scholar
  7. Appleby, P. G., 2001. Chronostratigraphic techniques in recent sediments. Tracking environmental change using lake sediments. In Basin Analysis, Coring, and Chronological Techniques, Vol. 1. Kluwer Academic Publishers, Dordrecht.Google Scholar
  8. Beklioglu, M. & C. O. Tan, 2008. Drought complicated restoration of a shallow Mediterranean Lake by biomanipulation. Archiv für Hydrobiologie/Fundamentals of Applied Limnology 171: 105–118.CrossRefGoogle Scholar
  9. Beklioğlu, M., Ö. İnce & İ. Tüzün, 2003. Restoration of eutrophic Lake Eymir, Turkey, by biomanipulation undertaken following a major external nutrient control I. Hydrobiologia 489: 93–105.CrossRefGoogle Scholar
  10. Beklioğlu, M., G. Altınayar & C. O. Tan, 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie 166: 535–556.CrossRefGoogle Scholar
  11. Beklioğlu, M., S. Romo, I. Kagalou, X. Quintana & E. Becares, 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326.CrossRefGoogle Scholar
  12. Beklioglu, M., M. Meerhoff, M. Søndergaard & E. Jeppesen, 2011. Eutrophication and restoration of shallow lakes from a cold temperate to a warm Mediterranean and a (sub) tropical climate. In Ansari, A. A., S. Singh Gill, G. R. Lanza &W. Rast (eds), Eutrophication: Causes, consequences and control. Springer, Netherlands: 91–108.Google Scholar
  13. Bennett, K., 1996. Determination of the number of zones in a biostratigraphic sequence. New Phytologist 132: 155–170.CrossRefGoogle Scholar
  14. Boll T., E. E. Levi, G. Bezirci, M. Özuluğ, Ü. N. Tavşanoğlu, A. İ. Çakıroğlu, S. Özcan, S. Brucet, E. Jeppesen & M. Beklioğlu, in revision. Fish assemblage and diversity in lakes of western and central Turkey - role of geo-climatic and other environmental variables. Hydrobiologia.Google Scholar
  15. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  16. Bos, D. G., B. F. Cumming & J. P. Smol, 1999. Cladocera and Anostraca from the interior plateau of British Columbia, Canada, as paleolimnological indicators of salinity and lake level. Hydrobiologia 392: 129–141.CrossRefGoogle Scholar
  17. Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Canadian Journal of Fisheries and Aquatic Sciences 55: 1093–1103.CrossRefGoogle Scholar
  18. Brucet, S., D. Boix, S. Gascon, J. Sala, X. D. Quintana, A. Badosa, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32: 692–702.CrossRefGoogle Scholar
  19. Bucak, T., E. Saraoğlu, E. E. Levi, Ü. N. Tavşanoğlu, Aİ. Çakıroğlu, E. Jeppesen & M. Beklioğlu, 2012. The role of water level for macrophyte growth and trophic interactions in eutrophic Mediterranean shallow lakes: a mesocosm experiment with and without fish. Freshwater Biology 57: 1631–1642.CrossRefGoogle Scholar
  20. Buchaca, T., T. Skov, S. L. Amsinck, V. Gonçalves, J. M. N. Azevedo, T. J. Andersen & E. Jeppesen, 2011. Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic and warmer Lake Furnas (Azores Archipelago, Portugal): a paleoecological approach. Ecosystems 14: 458–477.CrossRefGoogle Scholar
  21. Burnak, L. & M. Beklioğlu, 2000. Macrophyte dominated clear-water state of Lake Mogan. Turkish Journal of Zoology 24: 305–313.Google Scholar
  22. Çakıroğlu, Aİ., Ü. N. Tavşanoğlu, E. E. Levi, T. A. Davidson, T. Bucak, A. Özen, G. K. Akyıldız, E. Jeppesen & M. Beklioğlu, 2014. Relatedness between contemporary and 123 subfossil cladoceran assemblages in Turkish lakes. Journal of Paleolimnology 52: 367–383.CrossRefGoogle Scholar
  23. Chen, G., C. Dalton & D. Taylor, 2010. Cladocera as indicators of trophic state in Irish lakes. Journal of Paleolimnology 44: 465–481.CrossRefGoogle Scholar
  24. Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506: 23–27.CrossRefGoogle Scholar
  25. Davidson, T. A., C. D. Sayer, M. Perrow, M. Bramm & E. Jeppesen, 2010a. The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach. Freshwater Biology 55: 546–564.CrossRefGoogle Scholar
  26. Davidson, T. A., C. D. Sayer, P. Langdon, A. Burgess & M. Jackson, 2010b. Inferring past zooplanktivorous fish and macrophyte density in a shallow lake: application of a new regression tree model. Freshwater Biology 55: 584–599.CrossRefGoogle Scholar
  27. Davidson, T. A., S. L. Amsinck, O. Bennike, F. Landkildehus, T. L. Lauridsen & E. Jeppesen, 2011a. Inferring a single variable from an assemblage with multiple controls: getting into deep water with cladoceran lake-depth transfer functions. Hydrobiologia 676: 129–142.CrossRefGoogle Scholar
  28. Davidson, T. A., H. Bennion, E. Jeppesen, G. H. Clarke, C. D. Sayer, D. Morley, B. V. Odgaard, P. Rasmussen, R. Rawcliffe, J. Salgado, G. L. Simpson & S. L. Amsinck, 2011b. The role of cladocerans in tracking long-term change in shallow lake trophic status. Hydrobiologia 676: 299–315.CrossRefGoogle Scholar
  29. DeSellas, A. M., A. M. Paterson, J. M. Sweetman & J. P. Smol, 2008. Cladocera assemblages from the surface sediments of south- central Ontario (Canada) lakes and their relationships to measured environmental variables. Hydrobiologia 600: 105–119.CrossRefGoogle Scholar
  30. Dodson, S. I. & D. G. Frey, 2001. Cladocera and other Branchiopoda. In Ecology and Classification of North American Freshwater Invertebrates. Academic, San Diego: 849–913.Google Scholar
  31. DSİ, 1993. Mogan Gölü limnolojik etüt raporu. Ankara: 212 pp (in Turkish).Google Scholar
  32. DSİ, 2000. XVIII.Bölge Müdürlüğü 2001 yılı program bütçe toplantısı takdim raporu. Isparta (in Turkish).Google Scholar
  33. Eastwood, W. J., N. J. G. Pearce, J. A. Westgate, W. T. Perkins, H. F. Lamb & N. Roberts, 1999. Geochemistry of Santorini tephra in lake sediments from Southwest Turkey. Global and Planetary Change 21: 17–29.CrossRefGoogle Scholar
  34. European climate assessment and dataset project [available on internet at http://eca.knmi.nl/], August, 2013.
  35. Flöβner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.  Google Scholar
  36. Frey, D. G., 1959. The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). International Review of Hydrobiology 44: 27–50.CrossRefGoogle Scholar
  37. Gasiorowski, M. & K. Szeroczynska, 2004. Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the history of the Ostrowite Lake (northern Poland). Hydrobiologia 526: 137–144.CrossRefGoogle Scholar
  38. Green, A. J., C. Fuentes, E. Moreno-Ostos & S. L. Rodrigues da Silva, 2005. Factors influencing cladoceran abundance and species richness in brackish lakes in Eastern Spain. Annales de Limnologie: International Journal of Limnology 41: 73–81.CrossRefGoogle Scholar
  39. Grimm, E. C., 1987. CONISS – a FORTRAN-77 program for stratigraphically constrained cluster-analysis by the method of incremental sum of squares. Computers and Geosciences 13: 13–35.CrossRefGoogle Scholar
  40. Hobaek, A., M. Manca & T. Andersen, 2002. Factors influencing species richness in lacustrine zooplankton. Acta Oecologica 23: 155–163.CrossRefGoogle Scholar
  41. Hofmann, W., 1987. Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145: 315–321.CrossRefGoogle Scholar
  42. Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.CrossRefGoogle Scholar
  43. Horppila, J., A. Liljendahl-Nurminen & T. Malinen, 2004. Effects of clay turbidity and light on the predator–prey interaction between smelts and chaoborids. Canadian Journal of Fisheries and Aquatic Sciences 61(1): 862–1870.Google Scholar
  44. IPCC, 2007. Climate change 2007: impacts, adaptation and vulnerability. In Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson (eds), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  45. IPCC, 2014. Summary for policymakers. In Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea & L. L. White (eds), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 1–32.Google Scholar
  46. Jeppesen, E., E. A. Madsen, J. P. Jensen & N. J. Anderson, 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lake. Freshwater Biology 36: 115–127.CrossRefGoogle Scholar
  47. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.CrossRefGoogle Scholar
  48. Jeppesen, E., T. L. Lauridsen, S. F. Mitchell, K. Christoffersen & C. W. Burns, 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. Journal of Plankton Research 22: 951–968. CrossRefGoogle Scholar
  49. Jeppesen, E., J. P. Jensen, H. Skovgaard & C. B. Hvidt, 2001. Changes in the abundance of planktivorous fish in Lake Skanderborg during the past two centuries – a palaeoecological approach. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 143–152.CrossRefGoogle Scholar
  50. Jeppesen, E., T. L. Lauridsen, S. L. Amsinck, K. Christoffersen & S. F. Mitchell, 2003. Sub-fossils of cladocerans in the surface sediments of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491: 321–330.CrossRefGoogle Scholar
  51. Jeppesen, E., P. Noges, T. A. Davidson, J. Haberman, T. Noges, K. Blank, T. L. Lauridsen, M. Søndergaard, C. Sayer, R. Laugaste, L. S. Johansson, T. Bjerring & S. L. Amsinck, 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297.CrossRefGoogle Scholar
  52. Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Noges, P. Noges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. Fernandes Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.CrossRefGoogle Scholar
  53. Johansson, L. S., S. L. Amsinck, R. Bjerring & E. Jeppesen, 2005. Mid- to Late-Holocene land-use change and lake development at Dallund Sø, Denmark: trophic structure inferred from cladoceran subfossils. The Holocene 5: 1143–1151.CrossRefGoogle Scholar
  54. Jones, M. D., M. J. Leng, W. J. Eastwood, D. H. Keen & C. S. M. Turney, 2002. Interpreting stable-isotope records from freshwater snail-shell carbonate: a Holocene case study from Lake Gölhisar, Turkey. The Holocene 12: 629–634.CrossRefGoogle Scholar
  55. Juggins, S., 2009. Rioja: Analysis of Quaternary Science Data, R Package Version 0.5-6, http://cran.r-project.org/package=rioja, May, 2012.
  56. Justel, A., D. Pena & R. Zamar, 1997. A multivariate Kolmogorov–Smirnov test of goodness of fit. Statistics and Probability Letters 35(3): 251–259.CrossRefGoogle Scholar
  57. Kadıoğlu, M., 1997. Trends in surface air temperature data over Turkey. International Journal of Climatology 17: 511–520.CrossRefGoogle Scholar
  58. Kattel, G. R., R. W. Battarbee, A. W. Mackay & H. J. B. Birks, 2008. Recent ecological change in remote mountain loch: an evaluation of Cladocera-based temperature transfer function. Palaeogeography, Palaeoecology, Palaeooceanography 259: 51–76.CrossRefGoogle Scholar
  59. Korhola, A. & M. Rautio, 2001. Cladocera and other branchiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 4., Zoological Indicators Kluwer Academic Publishers, Dordrecht: 173–180.CrossRefGoogle Scholar
  60. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  61. Levi, E. E., Aİ. Çakıroğlu, T. Bucak, B. V. Odgaard, T. A. Davidson, E. Jeppesen & M. Beklioğlu, 2014. Similarity between contemporary vegetation and plant remains in the sediment surface in Mediterranean lakes. Freshwater Biology 59: 724–736.CrossRefGoogle Scholar
  62. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, Cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology 19: 443–463.CrossRefGoogle Scholar
  63. Manav, E. & S. V. Yerli, 2008. An assessment on the trophic status of Lake Mogan, Turkey. Fresenius Environmental Bulletin 17: 3–8.Google Scholar
  64. Mangıt, F. & S. V. Yerli, 2010. An approach for trophic gradient in Lake Mogan (Turkey): a shallow eutrophic lake. Hacettepe Journal of Biology and Chemistry 38(1): 41–45.Google Scholar
  65. Moss, B., 1998. The Ecology of Freshwaters, Man and Medium Past to Future, 3rd ed. Blackwell Science, Oxford: 557 pp.Google Scholar
  66. Moss, B., D. Stephen, C. Alvarez, E. Becares, W. van de Bund, S. E. Collings, E. van Donk, E. de Eyot, T. Feldmann, C. Fernandez-Alaez, M. Fernandez-Alaez, R. J. M. Franken, F. Garcıa-Criado, E. M. Gross, M. Gyllström, L. A. Hansson, K. Irvine, A. Jarvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Künnap, A. Laas, E. Lill, B. Lorens, H. Luup, M. R. Miracle, P. Noges, T. Noges, M. Nykanen, I. Ott, W. Peczula, E. T. H. M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujoe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 507–549.CrossRefGoogle Scholar
  67. Nevalainen, L., 2010. Evaluation of microcrustacean (Cladocera, Chydoridae) biodiversity based on sweep net and surface sediment samples. Ecoscience 17: 356–364.CrossRefGoogle Scholar
  68. Nevalainen, L., K. Sarmaja-Korjonen & T. P. Luoto, 2011. Sedimentary Cladocera as indicators of past water level changes in shallow northern lakes. Quaternary Research 75: 430–437.CrossRefGoogle Scholar
  69. Nevalainen, L., T. P. Luoto, S. Kultti & K. Sarmaja-Korjonen, 2013. Spatio-temporal distribution of sedimentary Cladocera (Crustacea: Branchiopoda) in relation to climate. Journal of Biogeography 40: 1548–1559.CrossRefGoogle Scholar
  70. Nurminen, A. L., J. Horppila, L. Uusitalo & J. Niemisto, 2008. Spatial variability in the abundance of pelagic invertebrate predators in relation to depth and turbidity. Aquatic Ecology 42: 25–33.CrossRefGoogle Scholar
  71. ÖÇKK, 2002. Mogan Gölü Havzası Biyolojik Zenginlikleri ve Ekolojik Yönetim Planı. Çevre Bakanlığı Özel Çevre Koruma Kurumu Başkanlığı, Ankara. (in Turkish).Google Scholar
  72. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2010. Vegan: Community Ecology Package. R Package Version 1.17-4, http://CRAN.R-project.org/package=vegan, May, 2012.
  73. Özen, A., B. Karapınar, İ. Küçük, E. Jeppesen & M. Beklioğlu, 2010. Drought-induced changes in nutrient concentrations and retention in shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia 646: 61–72.CrossRefGoogle Scholar
  74. Özkan, K., E. Jeppesen, L. S. Johansson & M. Beklioğlu, 2010. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biology 55: 463–465.CrossRefGoogle Scholar
  75. Papastergiadou, E., I. Kagalou, K. Stefanidis, A. Retalis & I. Leonardos, 2010. Effects of anthropogenic influences on the trophic state, land uses and aquatic vegetation in a shallow Mediterranean lake: implications for restoration. Water Resources Management 24: 415–435.CrossRefGoogle Scholar
  76. Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences Discussions 4: 439–473.CrossRefGoogle Scholar
  77. Rehber, E., 1991. Alternatif Tarım Üzerine Bir Tartışma (A Review on Alternative Agriculture). Uludağ Üniversitesi Ziraat Fakültesi Dergisi No: 8: 153–160 (in Turkish).Google Scholar
  78. Şekercioğlu, Ç. H., S. Anderson, E. Akçay, R. Bilgin, Ö. E. Can, G. Semiz, Ç. Tavşanoğlu, M. B. Yokeş, A. Soyumert, K. Ipekdal, I. K. Sağlam, M. Yücel & H. N. Dalfes, 2011. Turkey’s globally important biodiversity in crisis. Biological Conservation 144: 2752–2769.CrossRefGoogle Scholar
  79. Skov, T., T. Buchaca, S. L. Amsinck, F. Landkildehus, B. V. Odgaard, J. Azevedo, V. Gonçalves, P. M. Raposeiro, T. J. Andersen & E. Jeppesen, 2010. Using invertebrate remains and pigments in the sediment to infer changes in trophic structure after fish introduction in Lake Fogo: a crater lake in the Azores. Hydrobiologia 654: 13–25.CrossRefGoogle Scholar
  80. Szeroczynska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie: 84 pp.Google Scholar
  81. Tanrıvermiş, H., 2003. Agricultural land use change and sustainable use of land resources in the Mediterranean region of Turkey. Journal of Arid Environments 54: 553–564.CrossRefGoogle Scholar
  82. Tanyolaç, J. & M. Karabatak, 1974. Mogan Gölü’nün Biyolojik ve Hidrolojik Özelliklerinin Tespiti. TÜBİTAK Proje no: VHAG-91 (in Turkish).Google Scholar
  83. Tavşanoğlu, Ü. N., 2012. Zooplankton adaptation strategies against fish predation in Turkish shallow lakes. PhD Thesis.Google Scholar
  84. Tavşanoğlu, Ü. N., S. Brucet, E. E. Levi, T. Bucak, G. Bezirci, A. Özen, L. S. Johansson, E. Jeppesen & M. Beklioğlu, 2015. Size-based diel migration of zooplankton in Mediterranean shallow lakes assessed from in situ experiments with artificial plants. Hydrobiologia 753: 47–59.CrossRefGoogle Scholar
  85. ter Braak, C. J. F., 1995. Ordination. In Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge: 91–173.CrossRefGoogle Scholar
  86. ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.CrossRefGoogle Scholar
  87. Tübitak Marmara Research Center, 2013. Havza Koruma Eylem Planlarının Hazırlanması-Burdur Havzası: 466 pp (in Turkish).Google Scholar
  88. Türkeş, M., U. M. Sümer & G. Kılıç, 1995. Variations and trends in annual mean air temperatures in Turkey with respect to climatic variability. International Journal of Climatology 15: 557–569.CrossRefGoogle Scholar
  89. Türkeş, M., U. M. Sümer & I. Demir, 2002. Evaluation of trends and changes in mean, maximum and minimum temperatures of Turkey for the period 1929–1999. International Journal of Climatology 22: 947–977.CrossRefGoogle Scholar
  90. Türkeş, M., T. Koç & F. Saris, 2009. Spatiotemporal variability of precipitation total series over Turkey. International Journal of Climatology 29: 1056–1074.CrossRefGoogle Scholar
  91. Turkish State Meteorological Service, 2011. http://www.meteoroloji.gov.tr/index.aspx, January, 2011.
  92. Turkish State Meteorological Service, 2014. http://www.meteoroloji.gov.tr/index.aspx, March, 2014.
  93. Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H. Schierup, K. Christoffersen & D. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.CrossRefGoogle Scholar
  94. Yerli, S. V., E. Kıvrak, H. Gürbüz, E. Manav, F. Mangıt & O. Türkecan, 2012. Phytoplankton community, nutrients and chlorophyll a in Lake Mogan (Turkey); with comparison between current and old data. Turkish Journal of Fisheries and Aquatic Sciences 12: 95–104.CrossRefGoogle Scholar
  95. Zhang, J., S. E. Jørgensen, C. O. Tan & M. Beklioğlu, 2003a. A structurally dynamic modelling – Lake Mogan, Turkey as a case study. Ecological Modelling 164: 103–120.CrossRefGoogle Scholar
  96. Zhang, J., S. E. Jørgensen, M. Beklioğlu & Ö. Ince, 2003b. Hysteresis in vegetation shift – Lake Mogan prognoses. Ecological Modelling 164: 227–238.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Limnology Laboratory, Department of BiologyMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of BiologyUniversity of BozokYozgatTurkey
  3. 3.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
  4. 4.Department of Bioscience and the Arctic Research CentreAarhus UniversitySilkeborgDenmark
  5. 5.Sino-Danish Centre for Education and ResearchBeijingChina
  6. 6.Greenland Climate Research Centre (GCRC)Greenland Institute of Natural ResourcesNuukGreenland
  7. 7.Kemal Kurdaş Ecological Research and Training Station Lake EymirAnkaraTurkey

Personalised recommendations