Advertisement

Hydrobiologia

, Volume 768, Issue 1, pp 211–222 | Cite as

Contrasting estuary-scale distribution of wintering and migrating waders: the potential role of fear

  • Ricardo C. Martins
  • Teresa Catry
  • Rui Rebelo
  • Sara Pardal
  • Jorge M. Palmeirim
  • José P. Granadeiro
Primary Research Paper

Abstract

In estuaries hosting both wintering and migrating populations of waders of the same species, the distinct ecological constraints on birds in different seasons may result in different criteria being used for selection of suitable foraging habitat. We analysed the distribution patterns of dunlins Calidris alpina in the Tagus estuary, Portugal, during the non-breeding season and investigated the roles of prey availability and predation risk to explain those patterns. The southern estuary provided higher prey availability but their narrower flats may induce greater fear of predation in waders than the open northern flats. However, our data suggest that the real risk was similar. Migrating birds avoided the southern estuary, favouring areas perceived as safer over better feeding opportunities. In contrast, wintering dunlins favoured the southern flats, despite their proximity to cover. Presumably, wintering waders have a better knowledge of the estuary, including its real predation risks, taking advantage of the best foraging areas. Without such knowledge, waders in short stopovers have to select their foraging areas based on indirect indicators of predation risk, such as distance to cover. This study illustrates the importance of incorporating specificities of habitat preferences by wintering and migrating wader populations in conservation planning for large estuaries.

Keywords

Dunlin Calidris alpina Migration State-dependent habitat choice Predation risk Stopover Tagus estuary 

Notes

Acknowledgments

We are indebted to many colleagues that kindly helped in wader catches, invertebrate sampling and laboratory analyses, mainly M Lecoq, I Catry, MP Dias, A Almeida, H Alonso and C Maldonado. Thanks are due to Reserva Natural do Estuário do Tejo for facilities made available for fieldwork and to Instituto da Conservação da Natureza e das Florestas for providing licenses to undertake captures and radio tag dunlins. We also acknowledge Fundação Gonçalves Júnior and Fundação das Salinas do Samouco for permission to undertake counts and wader catches in areas under their management. This study was funded by Fundação para a Ciência e Tecnologia through project Invisible Links (PTDC/MAR/119920/2010) and also by Grants to RCM (FRH/BD/44871/2008) and TC (SFRH/BPD/46967/2008 and SFRH/BPD/102255/2014).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Research involving human participants and/or animals

Neither dunlin captures nor the deployment of radio-tags caused any injury to the animals and both activities were performed in compliance with the Portuguese laws, under specific licenses provided by Instituto da Conservação da Natureza e das Florestas.

Supplementary material

10750_2015_2549_MOESM1_ESM.pdf (5 kb)
Online Resource 1 Seasonal variation in the density of waders (except dunlin) foraging in intertidal areas of the northern and southern sectors of the Tagus estuary. The wader community includes 20 species, with black-tailed godwit Limosa limosa, grey plover Pluvialis squatarola, redshank Tringa totanus and avocet Recurvirostra avosetta representing ca. 70% of all birds. Data was obtained from monthly low-tide counts in selected plots near the shoreline (nine plots in the northern sector, totalling 173 ha, and 15 plots in the southern sector, totalling 460 ha), between December 2008 and December 2009. Vertical lines represent SE (PDF 4 kb)

References

  1. Albanese, G., C. A. Davis & B. W. Compton, 2012. Spatiotemporal scaling of North American continental interior wetlands: implications for shorebird conservation. Landscape Ecology 27: 1465–1479.CrossRefGoogle Scholar
  2. Alves, J. A., M. P. Dias, T. Catry, H. Costa, P. Fernandes, R. C. Martins, F. Moniz & A. Rocha, 2010a. Monitorização das populações de aves aquáticas dos estuários do Tejo e do Guadiana. Relatório do ano de 2009. Anuário Ornitológico (SPEA) 7: 109–119.Google Scholar
  3. Alves, J. A., P. M. Lourenço, T. Piersma, W. J. Sutherland & J. A. Gill, 2010b. Population overlap and habitat segregation in wintering black-tailed godwits Limosa limosa. Bird Study 57: 381–391.CrossRefGoogle Scholar
  4. Alves, J. A., M. P. Dias, A. Rocha, B. Barreto, T. Catry, H. Costa, P. Fernandes, B. Ginja, K. Glen, J. Jara, R. C. Martins, F. Moniz, S. Pardal, T. Pereira, J. Rodrigues & M. Rolo, 2011. Monitorização das populações de aves aquáticas dos estuários do Tejo, Sado e Guadiana. Relatório do ano de 2010. Anuário Ornitológico (SPEA) 8: 118–133.Google Scholar
  5. Alves, J. A., P. M. Lourenço, M. P. Dias, L. Antunes, T. Catry, H. Costa, P. Fernandes, B. Ginja, J. Jara, R. C. Martins, F. Moniz, S. Pardal, T. Pereira, M. J. Rainho, A. Rocha, J. Rodrigues & M. Rolo, 2015. Monitoring waterbird populations on the Tejo, Sado and Guadiana estuaries, Portugal: 2011 report. Anuário Ornitológico (SPEA) 9: in press.Google Scholar
  6. Barbosa, A., 1997. The effects of predation risk on scanning and flocking behavior in Dunlin. Journal of Field Ornithology 68: 607–612.Google Scholar
  7. Catry, T., J. A. Alves, J. Andrade, H. Costa, M. P. Dias, P. Fernandes, A. I. Leal, P. M. Lourenço, R. C. Martins, F. Moniz, S. Pardal, A. Rocha, C. D. Santos, V. Encarnação & J. P. Granadeiro, 2011. Long-term declines of wader populations at the Tagus estuary, Portugal: a response to global or local factors? Bird Conservation International 21: 438–453.CrossRefGoogle Scholar
  8. Catry, T., J. A. Alves, J. A. Gill, T. G. Gunnarsson & J. P. Granadeiro, 2012a. Sex promotes spatial and dietary segregation in a migratory shorebird during the non-breeding season. Plos One 7: e33811.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Catry, T., R. C. Martins & J. P. Granadeiro, 2012b. Discriminating geographic origins of migratory waders at stopover sites: insights from stable isotope analysis of toenails. Journal of Avian Biology 43: 79–84.CrossRefGoogle Scholar
  10. Cohen, J. B., S. M. Karpanty & J. D. Fraser, 2010. Habitat selection and behavior of Red Knots on the New Jersey Atlantic coast during spring stopover. Condor 112: 655–662.CrossRefGoogle Scholar
  11. Cresswell, W., 2008. Non-lethal effects of predation in birds. Ibis 150: 3–17.CrossRefGoogle Scholar
  12. Cresswell, W. & D. P. Whitfield, 1994. The effects of raptor predation on wintering wader populations at the Tyninghame estuary, southeast Scotland. Ibis 136: 223–232.CrossRefGoogle Scholar
  13. Dekker, D. & R. Ydenberg, 2004. Raptor predation on wintering Dunlins in relation to the tidal cycle. Condor 106: 415–419.CrossRefGoogle Scholar
  14. Delany, S., D. Scott, T. Dodman & D. Stroud, 2009. An atlas of wader populations in Africa and western Eurasia. Wetlands International and International Wader Study Group, Wageningen.Google Scholar
  15. Dias, M. P., J. P. Granadeiro, M. Lecoq, C. D. Santos & J. M. Palmeirim, 2006. Distance to high-tide roosts constrains the use of foraging areas by dunlins: implications for the management of estuarine wetlands. Biological Conservation 131: 446–452.CrossRefGoogle Scholar
  16. Dierschke, V., 1998. High profit at high risk for juvenile Dunlins Calidris alpina stopping over at Helgoland (German Bight). Ardea 86: 59–69.Google Scholar
  17. Farmer, A. H. & A. H. Parent, 1997. Effects of the landscape on shorebird movements at spring migration stopovers. Condor 99: 698–707.CrossRefGoogle Scholar
  18. Goss-Custard, J., 1980. Competition for food and interference among waders. Ardea 68: 52.Google Scholar
  19. Goss-Custard, J. D., R. E. Jones & P. E. Newbery, 1977. Ecology of wash 1: distribution and diet of wading birds (Charadrii). Journal of Applied Ecology 14: 681–700.CrossRefGoogle Scholar
  20. Granadeiro, J. P., C. D. Santos, M. P. Dias & J. M. Palmeirim, 2007. Environmental factors drive habitat partitioning in birds feeding in intertidal flats: implications for conservation. Hydrobiologia 587: 291–302.CrossRefGoogle Scholar
  21. Harrington, B. A., S. Koch, L. K. Niles & K. Kalasz, 2010. Red Knots with different winter destinations: differential use of an autumn stopover area. Waterbirds 33: 357–363.CrossRefGoogle Scholar
  22. Hilton, G. M., G. D. Ruxton & W. Cresswell, 1999. Choice of foraging area with respect to predation risk in redshanks: the effects of weather and predator activity. Oikos 87: 295–302.CrossRefGoogle Scholar
  23. INE, 2011. XV Recenseamento Geral da População—Censos 2011. In: Instituto Nacional de Estatística. http://mapas.ine.pt/download/index2011.phtml. Accessed 25-06-2014.
  24. Kelly, J. P., 2001. Hydrographic correlates of winter Dunlin abundance and distribution in a temperate estuary. Waterbirds 24: 309–322.CrossRefGoogle Scholar
  25. Lank, D. B., R. W. Butler, J. Ireland & R. C. Ydenberg, 2003. Effects of predation danger on migration strategies of sandpipers. Oikos 103: 303–319.CrossRefGoogle Scholar
  26. Lank, D. B. & R. C. Ydenberg, 2003. Death and danger at migratory stopovers: problems with “predation risk”. Journal of Avian Biology 34: 225–228.CrossRefGoogle Scholar
  27. Lima, S. L., 1998. Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. In Anders Pape Møller, M. M. & J. B. S. Peter (eds), Advances in the Study of Behavior. Vol. 27. Academic Press, New York: 215–290.Google Scholar
  28. Lima, S. L. & L. M. Dill, 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68: 619–640.CrossRefGoogle Scholar
  29. Lindstrom, A., 1990. The role of predation risk in stopover habitat selection in migrating bramblings, Fringilla montifringilla. Behavioral Ecology 1: 102–106.CrossRefGoogle Scholar
  30. Lopes, R. J., J. C. Marques & L. Wennerberg, 2006. Migratory connectivity and temporal segregation of dunlin (Calidris alpina) in Portugal: evidence from morphology, ringing recoveries and mtDNA. Journal of Ornithology 147: 385–394.CrossRefGoogle Scholar
  31. Martins, R. C., T. Catry & J. P. Granadeiro, 2014. Crossbow-netting: a new method for capturing shorebirds. Journal of Field Ornithology 85: 84–90.CrossRefGoogle Scholar
  32. Martins, R. C., T. Catry, C. D. Santos, J. M. Palmeirim & J. P. Granadeiro, 2013. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a South European estuary: improved feeding conditions for northward migrants. Plos One 8: e81174.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Michaelsen, T. C. & I. Byrkjedal, 2002. ‘Magic carpet’ flight in shorebirds attacked by raptors on a migrational stopover site. Ardea 90: 167–171.Google Scholar
  34. Moreira, F., 1995. Utilização das zonas entre-marés do estuário do Tejo por aves aquáticas e suas implicações para os fluxos de energia na teia trófica estuarina. PhD Thesis, Universidade de Lisboa.Google Scholar
  35. Nebel, S. & R. Ydenberg, 2005. Differential predator escape performance contributes to a latitudinal sex ratio cline in a migratory shorebird. Behavioral Ecology and Sociobiology 59: 44–50.CrossRefGoogle Scholar
  36. Piersma, T., Y. Verkuil & I. Tulp, 1994. Resources for long-distance migration of knots Calidris canutus islandica and C. c. canutus: how broad is the temporal exploitation window of benthic prey in the western and eastern Wadden Sea? Oikos 71: 393–407.CrossRefGoogle Scholar
  37. Pollock, K. H., S. R. Winterstein & M. J. Conroy, 1989. Estimation and analysis of survival distributions for radio-tagged animals. Biometrics 45: 99–109.CrossRefGoogle Scholar
  38. Pomeroy, A. C., 2006. Tradeoffs between food abundance and predation danger in spatial usage of a stopover site by western sandpipers, Calidris mauri. Oikos 112: 629–637.CrossRefGoogle Scholar
  39. Pomeroy, A. C., R. W. Butler & R. C. Ydenberg, 2006. Experimental evidence that migrants adjust usage at a stopover site to trade off food and danger. Behavioral Ecology 17: 1041–1045.CrossRefGoogle Scholar
  40. Pomeroy, A. C., D. A. A. Seaman, R. W. Butler, R. W. Elner, T. D. Williams & R. C. Ydenberg, 2008. Feeding-danger trade-offs underlie stopover site selection by migrants. Avian Conservation and Ecology 3: 7.Google Scholar
  41. R Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
  42. Rogers, D., 2003. High-tide roost choice by coastal waders. Wader Study Group Bulletin 100: 73–79.Google Scholar
  43. Rosa, S., A. L. Encarnação, J. P. Granadeiro & J. M. Palmeirim, 2006. High water roost selection by waders: maximizing feeding opportunities or avoiding predation? Ibis 148: 88–97.CrossRefGoogle Scholar
  44. Santos, C. D., J. P. Granadeiro & J. M. Palmeirim, 2005. Feeding ecology of Dunlin Calidris alpina in a southern European estuary. Ardeola 52: 235–252.Google Scholar
  45. Shepherd, P. C. F. & D. B. Lank, 2004. Marine and agricultural habitat preferences of Dunlin wintering in British Columbia. Journal of Wildlife Management 68: 61–73.CrossRefGoogle Scholar
  46. Sprague, A. J., D. J. Hamilton & A. W. Diamond, 2008. Site safety and food affect movements of Semipalmated Sandpipers (Calidris pusilla) migrating through the Upper Bay of Fundy. Avian Conservation and Ecology 3: 4.Google Scholar
  47. Taylor, C. M., D. B. Lank, A. C. Pomeroy & R. C. Ydenberg, 2007. Relationship between stopover site choice of migrating sandpipers, their population status, and environmental stressors. Israel Journal of Ecology & Evolution 53: 245–261.CrossRefGoogle Scholar
  48. Therneau, T., 2014. A package for survival analysis in S. R package version 2.37-7. http://CRAN.R-project.org/package=survival.
  49. van de Kam, J., B. J. Ens, T. Piersma & L. Zwarts, 2004. Shorebirds. An illustrated behavioural ecology. KNNV Publishers, Utrecht.Google Scholar
  50. van den Hout, P. J., B. Spaans & T. Piersma, 2008. Differential mortality of wintering shorebirds on the Banc d’Arguin, Mauritania, due to predation by large falcons. Ibis 150: 219–230.CrossRefGoogle Scholar
  51. van den Hout, P. J., J. A. van Gils, F. Robin, M. van der Geest, A. Dekinga & T. Piersma, 2014. Interference from adults forces young red knots to forage for longer and in dangerous places. Animal Behaviour 88: 137–146.CrossRefGoogle Scholar
  52. Warnock, N. & S. Warnock, 1993. Attachment of radio-transmitters to sandpipers: review and methods. Wader Study Group Bulletin 70: 28–30.Google Scholar
  53. Warnock, N., J. Y. Takekawa & M. A. Bishop, 2004. Migration and stopover strategies of individual Dunlin along the Pacific coast of North America. Canadian Journal of Zoology 82: 1687–1697.CrossRefGoogle Scholar
  54. Whitfield, D. P., 1985. Raptor predation on wintering waders in Southeast Scotland. Ibis 127: 544–558.CrossRefGoogle Scholar
  55. Yasué, M., 2006. Environmental factors and spatial scale influence shorebirds’ responses to human disturbance. Biological Conservation 128: 47–54.CrossRefGoogle Scholar
  56. Ydenberg, R. C., R. W. Butler, D. B. Lank, C. G. Guglielmo, M. Lemon & N. Wolf, 2002. Trade-offs, condition dependence and stopover site selection by migrating sandpipers. Journal of Avian Biology 33: 47–55.CrossRefGoogle Scholar
  57. Ydenberg, R. C., R. W. Butler, D. B. Lank, B. D. Smith & J. Ireland, 2004. Western sandpipers have altered migration tactics as peregrine falcon populations have recovered. Proceedings of the Royal Society B: Biological Sciences 271: 1263–1269.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ydenberg, R. C., D. Dekker, G. Kaiser, P. C. F. Shepherd, L. E. Ogden, K. Rickards & D. B. Lank, 2010. Winter body mass and over-ocean flocking as components of danger management by Pacific dunlins. BMC Ecology 10: 1.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ricardo C. Martins
    • 1
  • Teresa Catry
    • 2
  • Rui Rebelo
    • 3
  • Sara Pardal
    • 4
  • Jorge M. Palmeirim
    • 3
  • José P. Granadeiro
    • 5
  1. 1.Centre for Ecology, Evolution and Environmental Changes – cE3c / National Museum of Natural History and ScienceUniversidade de LisboaLisbonPortugal
  2. 2.Centre for Environmental and Marine Studies / National Museum of Natural History and ScienceUniversidade de LisboaLisbonPortugal
  3. 3.Centre for Ecology, Evolution and Environmental Changes – cE3c, Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  4. 4.MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências e TecnologiaUniversidade de CoimbraCoimbraPortugal
  5. 5.Centre for Environmental and Marine Studies / Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations