Hydrobiologia

, Volume 783, Issue 1, pp 105–115 | Cite as

Food resource partitioning between stream-dwelling Arctic charr Salvelinus alpinus (L.), Atlantic salmon Salmo salar L. and alpine bullhead Cottus poecilopus Heckel, 1836: an example of water column segregation

  • Javier Sánchez-Hernández
  • Heidi-Marie Gabler
  • Per-Arne Amundsen
CHARR II

Abstract

We assessed the food resource partitioning of three fish species (Arctic charr, Atlantic salmon and alpine bullhead) living in sympatry in a subarctic river. Fish were sampled monthly during the ice-free season (May–October), and dietary overlap among the species was calculated according to Schoener’s index. In October, the diet overlap among all three species was high (>70%). In contrast, large to modest food resource partitioning occurred among Arctic charr and the other two species from May to September (27–59% overlap), whereas there was a distinct diet overlap between Atlantic salmon and alpine bullhead in May, August and September (>64%), but not in July (53%). Surface prey (terrestrial and emerged aquatic insects), probably caught at the surface, were important for Arctic charr in August and September (24.9 and 46.6%, respectively), whereas the other fish species mainly fed on Apatania stigmatella, Mystrophora intermedia and Ephemerella aurivilli. Alpine bullhead seemed to feed close to the bottom, Atlantic salmon used both the bottom and water of various depths, whereas Arctic charr showed the greatest capacity to forage at the water surface. This vertical segregation may be important for fish assemblages in subarctic rivers, allowing food resource partitioning and coexistence of sympatric species.

Keywords

Allochthonous resources Diet overlap Feeding ecology Subarctic rivers Vertical distribution 

Notes

Acknowledgments

We appreciate constructive comments from Dr. M. Jobling and three anonymous reviewers, which considerably improved the quality of the manuscript. J. Sánchez-Hernández was supported by a postdoctoral grant from the Galician Plan for Research, Innovation, and Growth 2011-2015 (Plan I2C, Xunta de Galicia).

Supplementary material

10750_2015_2547_MOESM1_ESM.docx (474 kb)
Supplementary material 1 (DOCX 474 kb)
10750_2015_2547_MOESM2_ESM.docx (478 kb)
Supplementary material 2 (DOCX 477 kb)
10750_2015_2547_MOESM3_ESM.docx (489 kb)
Supplementary material 3 (DOCX 489 kb)
10750_2015_2547_MOESM4_ESM.docx (473 kb)
Supplementary material 4 (DOCX 472 kb)

References

  1. Amundsen, P.-A. & H.-M. Gabler, 2008. Food consumption and growth of Atlantic salmon parr in subarctic rivers: empirical support for food limitation and competition. Journal of Fish Biology 73: 250–261.CrossRefGoogle Scholar
  2. Amundsen, P.-A., H.-M. Gabler & F. J. Staldvik, 1996. A new approach to graphical analysis of feeding strategy from stomach contents data – modification of the Costello 1990 method. Journal of Fish Biology 48: 607–614.Google Scholar
  3. Arnold, G. P., P. W. Webb & B. H. Holford, 1991. The role of the pectoral fins in station-holding of Atlantic salmon parr (Salmo salar L.). Journal of Experimental Biology 156: 625–629.Google Scholar
  4. Balon, E. K., 1980. Charrs: salmonid fishes of the genus Salvelinus. Dr W. Junk Publishers, The Hague.Google Scholar
  5. Bornette, G., C. Amoros, C. Castella & J. L. Beffy, 1994. Succession and fluctuation in the aquatic vegetation of two former Rhône River channels. Vegetatio 110: 171–184.CrossRefGoogle Scholar
  6. Borza, P., T. Erős & N. Oertel, 2009. Food resource partitioning between two invasive gobiid species (Pisces, Gobiidae) in the littoral zone of the River Danube, Hungary. International Review of Hydrobiology 94: 609–621.CrossRefGoogle Scholar
  7. Brännäs, E. & A. Alanärä, 1992. Feeding behaviour of Arctic charr in comparison with rainbow trout. Aquaculture 105: 53–59.CrossRefGoogle Scholar
  8. Cavalli, L., R. Chappaz & A. Gilles, 1998. Diet of Arctic charr (Salvelinus alpinus (L.)) and brown trout (Salmo trutta L.) in sympatry in two high altitude alpine lakes. Hydrobiologia 386: 9–17.CrossRefGoogle Scholar
  9. Chessel, D., A. B. Dufour & J. Thioulouse, 2004. The ade4 package – I: one-table methods. R News 4: 5–10.Google Scholar
  10. Colloca, F., P. Carpentieri, E. Balestri & G. Ardizzone, 2010. Food resource partitioning in a Mediterranean demersal fish assemblage: the effect of body size and niche width. Marine Biology 157: 565–574.CrossRefGoogle Scholar
  11. Costalago, D., I. Palomera & V. Tirelli, 2014. Seasonal comparison of the diets of juvenile European anchovy Engraulis encrasicolus and sardine Sardina pilchardus in the Gulf of Lions. Journal of Sea Research 89: 64–72.CrossRefGoogle Scholar
  12. Dineen, G., S. S. C. Harrison & P. S. Giller, 2007. Diet partitioning in sympatric Atlantic salmon and brown trout in streams with contrasting riparian vegetation. Journal of Fish Biology 71: 17–38.CrossRefGoogle Scholar
  13. Elliott, J. M., 1967. The food of trout (Salmo trutta) in a dartmoor stream. Journal of Applied Ecology 4: 60–71.CrossRefGoogle Scholar
  14. Eloranta, A. P., K. K. Kahilainen, P.-A. Amundsen, R. Knudsen, C. Harrod & R. I. Jones, 2015. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecology and Evolution 5: 1664–1675.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fox, R. J. & D. R. Bellwood, 2011. Unconstrained by the clock? Plasticity of diel activity rhythm in a tropical reef fish, Siganus lineatus. Functional Ecology 25: 1096–1105.CrossRefGoogle Scholar
  16. Freeman, M. C. & G. D. Grossman, 1992. A field-test for competitive interactions among foraging stream fishes. Copeia 3: 898–902.CrossRefGoogle Scholar
  17. Gabler, H.-M. & P.-A. Amundsen, 1999. Resource partitioning between Siberian sculpin (Cottus poecilopus Heckel) and Atlantic salmon parr (Salmo salar L.) in a sub-Arctic river, northern Norway. Ecology of Freshwater Fish 8: 201–208.CrossRefGoogle Scholar
  18. Gabler, H.-M. & P.-A. Amundsen, 2010. Feeding strategies, resource utilisation and potential mechanisms for competitive coexistence of Atlantic salmon and alpine bullhead in a sub-Arctic river. Aquatic Ecology 44: 325–336.CrossRefGoogle Scholar
  19. Hesthagen, T., R. Saksgård, O. Hegge, B. K. Dervo & J. Skurdal, 2004. Niche overlap between young brown trout (Salmo trutta) and Siberian sculpin (Cottus poecilopus) in a subalpine Norwegian river. Hydrobiologia 521: 117–125.CrossRefGoogle Scholar
  20. Holmen, J., E. M. Olsen & L. A. Vøllestad, 2003. Interspecific competition between stream-dwelling brown trout and Alpine bullhead. Journal of Fish Biology 62: 1312–1325.CrossRefGoogle Scholar
  21. Hubert, W. A., D. D. Harris & H. A. Rhodes, 1993. Variation in the summer diet of age-0 brown trout in a regulated mountain stream. Hydrobiologia 259: 179–185.CrossRefGoogle Scholar
  22. Jepsen, D. B., K. O. Winemiller & D. C. Taphorn, 1997. Temporal patterns of resource partitioning among Cichla species in a Venezuela blackwater River. Journal of Fish Biology 51: 1085–1108.Google Scholar
  23. Johnson, J. H. & E. Z. Johnson, 1982. Diel foraging in relation to available prey in an Adirondack Mountain stream fish community. Hydrobiologia 96: 97–104.CrossRefGoogle Scholar
  24. Johnson, J. H. & J. E. McKenna, 2015. Diel resource partitioning among juvenile Atlantic salmon, brown trout, and rainbow trout during summer. North American Journal of Fisheries Management 35: 586–597.CrossRefGoogle Scholar
  25. Johansen, M., J. M. Elliott & A. Klemetsen, 2000. Diel fluctuations in invertebrate drift in a Norwegian stream north of the Arctic circle. Norwegian Journal of Entomology 47: 101–112.Google Scholar
  26. Jørgensen, E. H. & M. Jobling, 1990. Feeding modes in Arctic charr (Salvelinus alpinus L): the importance of bottom feeding for the maintenance of growth. Aquaculture 86: 379–385.CrossRefGoogle Scholar
  27. Kelly-Quinn, M. & J. J. Bracken, 1990. A seasonal analysis of the diet and feeding dynamics of brown trout, Salmo trutta L., in a small nursery stream. Aquaculture Research 21: 107–124.CrossRefGoogle Scholar
  28. Klemetsen, A., P.-A. Amundsen, J. B. Dempson, B. Jonsson, N. Jonsson, M. F. O’Connell & E. Mortensen, 2003. Atlantic salmon, Salmo salar L., brown trout, Salmo truttaL., and Arctic charr, Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.CrossRefGoogle Scholar
  29. Knudsen, R., R. Primicerio, P.-A. Amundsen & A. Klemetsen, 2010. Temporal stability of individual feeding specialization may promote speciation. Journal of Animal Ecology 79: 161–168.CrossRefPubMedGoogle Scholar
  30. Kronfeld-Schor, N. & T. Dayan, 2003. Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics 34: 153–181.CrossRefGoogle Scholar
  31. Langeland, A., J. H. L’Abee-Lund, B. Jonsson & N. Jonsson, 1991. Resource partitioning and niche shift in arctic charr Salvelinus alpinus and brown trout Salmo trutta. Journal of Animal Ecology 60: 895–912.CrossRefGoogle Scholar
  32. Lillehammer, A., 1973. Notes on the feeding relationships of trout (Salmo trutta L) and salmon (Salmo salar L.) in the River Suldaslågen. Norwegian Journal of Zoology 21: 25–28.Google Scholar
  33. McCarthy, I. D., 2007. The Welsh Torgoch (Salvelinus alpinus): a short review of its distribution and ecology. Ecology of Freshwater Fish 16: 34–40.CrossRefGoogle Scholar
  34. Mookerji, N., Z. Weng & A. Mazumder, 2004. Food partitioning between coexisting Atlantic salmon and brook trout in the Sainte-Marguerite River ecosystem, Quebec. Journal of Fish Biology 64: 680–694.CrossRefGoogle Scholar
  35. Moore, J. W. & I. A. Moore, 1974. Food and growth of arctic char, Salvelinus alpinus (L.), in the Cumberland Sound area of Baffin Island. Journal of Fish Biology 6: 79–92.CrossRefGoogle Scholar
  36. Nakano, S., K. D. Fausch & S. Kitano, 1999. Flexible niche partitioning via a foraging mode shift: a proposed mechanism for coexistence in stream-dwelling charrs. Journal of Animal Ecology 68: 1079–1092.CrossRefGoogle Scholar
  37. Rader, R. B., 1997. A functional classification of the drift: traits that influence invertebrate availability to salmonids. Canadian Journal of Fisheries and Aquatic Sciences 54: 1211–1234.CrossRefGoogle Scholar
  38. R Core Team. 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  39. Sánchez-Hernández, J. & F. Cobo, 2011. Summer food resource partitioning between four sympatric fish species in Central Spain (River Tormes). Folia Zoologica 60: 189–202.Google Scholar
  40. Sánchez-Hernández, J., R. Vieira-Lanero, M. J. Servia & F. Cobo, 2011. Feeding habits of four sympatric fish species in the Iberian Peninsula: keys to understanding coexistence using prey traits. Hydrobiologia 667: 119–132.CrossRefGoogle Scholar
  41. Sánchez-Hernández, J., M. J. Servia, R. Vieira-Lanero & F. Cobo, 2013. Prey trait analysis shows differences in summer feeding habitat use between wild YOY Atlantic salmon and brown trout. Italian Journal of Zoology 80: 449–454.CrossRefGoogle Scholar
  42. Sánchez-Hernández, J., H.-M. Glaber & P.-A. Amundsen, 2016. From autochthonous to allochthonous resources: seasonal shifts in food use by stream-dwelling YOY Arctic charr Salvelinus alpinus through the ice-free season. Journal of Fish Biology. doi:10.1111/jfb.12817.PubMedGoogle Scholar
  43. Schoener, T. W., 1970. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408–418.CrossRefGoogle Scholar
  44. Schoener, T. W., 1974. Resource partitioning in ecological communities. Science 185: 27–39.CrossRefPubMedGoogle Scholar
  45. Sinnatamby, R. N., J. A. Babaluk, G. Power, J. D. Reist & M. Power, 2012. Summer habitat use and feeding of juvenile Arctic charr, Salvelinus alpinus, in the Canadian High Arctic. Ecology of Freshwater Fish 21: 309–322.CrossRefGoogle Scholar
  46. Stenzel, A., 1987. Ecological aspects of juvenile Arctic char, (Salvelinus alpinus) in the Koroc River, Ungava Bay, Quebec. Waterloo, Ontario: M.Sc. thesis, University of Waterloo, 173 pp.Google Scholar
  47. Thioulouse, J., D. Chessel, S. Dolédec & J.-M. Olivier, 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7: 75–83.CrossRefGoogle Scholar
  48. Thioulouse, J., Y. Prin & R. Duponnois, 2012. Multivariate analyses in soil microbial ecology: a new paradigm. Environmental and Ecological Statistics 19: 490–499.CrossRefGoogle Scholar
  49. Tunney, T. D. & S. Ó. Steingrímsson, 2012. Foraging mode variation in three stream-dwelling salmonid fishes. Ecology of Freshwater Fish 21: 570–580.CrossRefGoogle Scholar
  50. Wallace, R. K., 1981. An assessment of diet-overlap indexes. Transactions of the American Fisheries Society 110: 72–76.CrossRefGoogle Scholar
  51. Williams, D. D. & B. W. Feltmate, 1992. Aquatic Insects. CAB International, Wallingford.Google Scholar
  52. Yu, S.-L. & T.-W. Lee, 2005. Habitat segregation by fishes in western Taiwan rivers. Journal of Applied Ichthyology 21: 531–534.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  2. 2.Department of Zoology and Physical Anthropology, Faculty of BiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations