Hydrobiologia

, Volume 768, Issue 1, pp 183–196 | Cite as

Potential drivers of seasonal shifts in fish omnivory in a subtropical stream

  • Ivan González-Bergonzoni
  • Erik Jeppesen
  • Nicolás Vidal
  • Franco Teixeira-de Mello
  • Guillermo Goyenola
  • Anahí López-Rodríguez
  • Mariana Meerhoff
Primary Research Paper

Abstract

The trophic structure of fish assemblages often varies seasonally, following the changes in food availability and supposedly water temperature. To unveil potential drivers of trophic shifts, we studied changes in fish trophic structure at both whole-assemblage and species levels at contrasting food availability and water temperatures in a subtropical stream. We analysed the diet of the most abundant omnivorous species (Bryconamericus iheringii) monthly along the year, searching for relationships with environmental variables changing seasonally (i.e. temperature and water level) and with fish reproductive stage. We ran a single-species food choice field experiment with fixed animal and vegetal food availability in contrasting seasons to test food availability as driver of diet shifts. At the assemblage level, we found a higher consumption of vegetal during summer, reflecting the increased proportion of vegetal in the diet of omnivores, which dominated the assemblage. At the species level, the enhanced vegetal consumption was related to increases in temperature and reduction in water level. Moreover, fish selected for vegetal during summer and for animal food in winter under experimental conditions. Our findings support the role of temperature driving food web dynamics by increasing fish herbivory towards warmer scenarios, with potential strong implications for whole-assemblage trophic structure.

Keywords

Fish diet Stream seasonality Temperature effect Food availability Stream food webs Fish herbivory 

References

  1. Adams, S. M., R. B. McLean & M. M. Huffman, 1982. Structuring of a predator population through temperature-mediated effects on prey availability. Canadian Journal of Fisheries and Aquatic Sciences 39: 1175–1184.CrossRefGoogle Scholar
  2. Alvarenga, É. R. D., N. Bazzoli, G. B. Santos & E. Rizzo, 2006. Reproductive biology and feeding of Curimatella lepidura (Eigenmann & Eigenmann) (Pisces, Curimatidae) in Juramento reservoir, Minas Gerais, Brazil. Revista Brasileira de Zoologia 23: 314–322.CrossRefGoogle Scholar
  3. Angermeier, P. L., 1982. Resource seasonality and fish diets in an Illinois stream. Environmental Biology of Fishes 7: 251–264.CrossRefGoogle Scholar
  4. Ballesteros, T. M., M. Torres-Mejia & M. P. Ramírez-Pinilla, 2009. How does diet influence the reproductive seasonality of tropical freshwater fish? A case study of a characin in a tropical mountain river. Neotropical Ichthyology 7: 693–700.CrossRefGoogle Scholar
  5. Behrens, M. D. & K. D. Lafferty, 2007. Temperature and diet effects on omnivorous fish performance: implications for the latitudinal diversity gradient in herbivorous fishes. Canadian Journal of Fisheries and Aquatic Sciences 64: 867–873.CrossRefGoogle Scholar
  6. Behrens, M. D. & K. D. Lafferty, 2012. Geographic variation in the diet of Opaleye (Girella nigricans) with respect to temperature and habitat. PLoS ONE 7: e45901.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Boyce, M. S., 1979. Seasonality and patterns of natural selection for life histories. The American Naturalist 114: 569–583.CrossRefGoogle Scholar
  8. Brabrand, Å., 1985. Food of roach (Rutilus rutilus) and ide (Leusiscus idus): significance of diet shift for interspecific competition in omnivorous fishes. Oecologia 66: 461–467.CrossRefGoogle Scholar
  9. Brooks, S., C. R. Tyler & J. P. Sumpter, 1997. Egg quality in fish: what makes a good egg? Reviews in Fish Biology and Fisheries 7: 387–416.CrossRefGoogle Scholar
  10. Caceres, C., L. Fuentes & F. P. Ojeda, 1994. Optimal feeding strategy of the temperate herbivorous fish Aplodactylus punctatus: the effects of food availability on digestive and reproductive patterns. Oecologia 99: 118–123.CrossRefGoogle Scholar
  11. Chalar, G., L. Delbene, I. González-Bergonzoni & R. Arocena, 2013. Fish assemblage changes along a trophic gradient induced by agricultural activities (Santa Lucía, Uruguay). Ecological Indicators 24: 582–588.CrossRefGoogle Scholar
  12. Clements, K. D., D. Raubenheimer & J. H. Choat, 2009. Nutritional ecology of marine herbivorous fishes: ten years on. Functional Ecology 23: 79–92.CrossRefGoogle Scholar
  13. Conover, D. O., 1992. Seasonality and the scheduling of life history at different latitudes. Journal of Fish Biology 41: 161–178.CrossRefGoogle Scholar
  14. Deus, C. P. & M. Petrere-Junior, 2003. Seasonal diet shifts of seven fish species in an Atlantic rainforest stream in Southeastern Brazil. Brazilian Journal of Biology 63: 579–588.CrossRefGoogle Scholar
  15. Floeter, S. R., M. D. Behrens, C. E. L. Ferreira, M. J. Paddack & M. H. Horn, 2005. Geographical gradients of marine herbivorous fishes: patterns and processes. Marine Biology 147: 1435–1447.CrossRefGoogle Scholar
  16. Friberg, N., A. Baattrup-Pedersen, M. Pedersen & J. Skriver, 2005. The new Danish stream monitoring programme (Novana): preparing monitoring activities for the water framework directive era. Environmental Monitoring and Assessment 111: 27–42.PubMedCrossRefGoogle Scholar
  17. González-Bergonzoni, I., M. Meerhoff, T. Davidson, F. Teixeira-de Mello, A. Baattrup-Pedersen & E. Jeppesen, 2012. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15: 492–503.CrossRefGoogle Scholar
  18. Goyenola, G., M. Meerhoff, F. Teixeira-de Mello, I. González-Bergonzoni, D. Graeber, C. Fosalba, N. Vidal, N. Mazzeo, N. B. Ovesen, E. Jeppesen & B. Kronvang, 2015. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes. Hydrology and Earth System Sciences 19: 4099–4111.CrossRefGoogle Scholar
  19. Grimm, N. B. & S. G. Fisher, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. Journal of the North American Benthological Society 8: 293–307.CrossRefGoogle Scholar
  20. He, E. & W. A. Wurtsbaugh, 1993. An empirical model of gastric evacuation rates for fish and an analysis of digestion in piscivorous brown trout. Transactions of the American Fisheries Society 122: 717–730.CrossRefGoogle Scholar
  21. Hellawell, J. M., 1972. The growth, reproduction and food of the roach Rutiulus rutilus (L) in Tjeukemeer, The Netherlands. Journal of Fish Biology 4: 469–486.CrossRefGoogle Scholar
  22. Hyslop, E. J., 1980. Stomach contents analysis—a review of methods and their application. Journal of Fish Biology 17: 411–429.CrossRefGoogle Scholar
  23. Jespersen, A. & K. Christoffersen, 1987. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.Google Scholar
  24. Kelso, J. R. M., 1972. Conversion, maintenance, and assimilation for Walleye, Stizostedion vitreum vitreum, as affected by size, diet, and temperature. Journal of the Fisheries Research Board of Canada 29: 1181–1192.CrossRefGoogle Scholar
  25. Kishi, D., M. Murakami, S. Nakano & K. Maekawa, 2005. Water temperature determines strength of top-down control in a stream food web. Freshwater Biology 50: 1315–1322.CrossRefGoogle Scholar
  26. Kramer, D. L., 1978. Reproductive seasonality in the fishes of a tropical stream. Ecology 59: 976–985.CrossRefGoogle Scholar
  27. Lampert, V. R., M. A. Azevedo & C. B. Fialho, 2004. Reproductive biology of Bryconamericus iheringii (Ostariophysi: Characidae) from rio Vacacaí, RS, Brazil. Neotropical Ichthyology 2: 209–215.CrossRefGoogle Scholar
  28. Lobón-Cervia, J. & P. A. Rincon, 1994. Trophic ecology or red roach (Rutilus arcasii) in a seasonal stream; an example of detritivory as feeding tactic. Freshwater Biology 32: 123–132.CrossRefGoogle Scholar
  29. Lyagina, T. N., 1972. The seasonal dynamics of the biological characteristics of the roach (Rutiulus rutilus L.) under conditions of varying food availability. Journal of Ichthyology 12: 210–226.Google Scholar
  30. Meerhoff, M., J. M. Clemente, F. Teixeira de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  31. Moreno, C. E. & G. Halffter, 2001. On the measure of sampling effort used in species accumulation curves. Journal of Applied Ecology 38: 487–490.CrossRefGoogle Scholar
  32. Morrill, J. C., R. C. Bales, M. Asce & M. H. Conklin, 2005. Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering 131: 139–146.CrossRefGoogle Scholar
  33. Peel, M. C., B. L. Finlayson & T. A. Mcmahon, 2007. Updated world map of the Köppen–Geiger climate classification. Hydrology and earth system sciences discussions 4: 439–473.CrossRefGoogle Scholar
  34. Persson, L., 1983. Food consumption and the significance of detritus and algae to intraspecific competition in roach Rutiulus rutilus in a shallow eutrophic lake. Oikos 41: 118–125.CrossRefGoogle Scholar
  35. Persson, L., 1986. Temperature-induced shift in foraging ability in two fish species, roach (Rutiulus rutilus) and perch (Perca fluviatilis): Implications for coexistence between poikilotherms. Journal of Animal Ecology 55: 829–839.CrossRefGoogle Scholar
  36. Pires, A. M., I. G. Cowx & M. M. Coelho, 1999. Seasonal changes in fish community structure of intermittent streams in the middle reaches of the Guadiana basin, Portugal. Journal of Fish Biology 54: 235–249.CrossRefGoogle Scholar
  37. Prejs, A. & K. Prejs, 1987. Feeding of tropical freshwater fishes: seasonality in resource availability and resource use. Oecologia 71: 397–404.CrossRefGoogle Scholar
  38. Pringle, C. M. & T. Hamazaki, 1998. The role of omnivory in a neotropical stream: separating diurnal and nocturnal effects. Ecology 79: 269–280.CrossRefGoogle Scholar
  39. Rusticucci, M. & M. Renom, 2008. Variability and trends in indices of quality-controlled daily temperature extremes in Uruguay. International Journal of Climatology 28(8): 1083–1095.CrossRefGoogle Scholar
  40. Seber, G. A. F. & E. D. Le Cren, 1967. Estimating population parameters from catches large relative to the population. Journal of Animal Ecology 36: 631–643.CrossRefGoogle Scholar
  41. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.CrossRefGoogle Scholar
  42. Teixeira-de Mello, F., I. González-Bergonzoni, F. Viana & C. Saizar, 2011a . Length–weight relationships of 26 fish species from the middle section of the Negro River (Tacuarembó-Durazno, Uruguay). Journal of Applied Ichthyology 27: 1413–1415.CrossRefGoogle Scholar
  43. Teixeira-de Mello, F., I. González-Bergonzoni & M. Loureiro, 2011b. Peces de agua dulce del Uruguay. Montevideo, Uruguay.Google Scholar
  44. Teixeira-de Mello, F., M. Meerhoff, A. Baattrup-Pedersen, T. Maigaard, P. Kristensen, T. Andersen, J. Clemente, C. Fosalba, E. Kristensen, M. Masdeu, T. Riis, N. Mazzeo & E. Jeppesen, 2012. Community structure of fish in lowland streams differ substantially between subtropical and temperate climates. Hydrobiologia 684: 143–160.CrossRefGoogle Scholar
  45. Teixeira-de Mello, F., E. Kristensen, M. Meerhoff, I. González-Bergonzoni, A. Baattrup-Pedersen, C. Iglesias, P. Kristensen, N. Mazzeo & E. Jeppesen, 2014. Monitoring fish communities in wadeable lowland streams: comparing the efficiency of electrofishing methods at contrasting fish assemblages. Environmental Monitoring and Assessment 186: 1665–1677.PubMedCrossRefGoogle Scholar
  46. Van Deventer, J. S. & W. S. Platts, 1985. A computer software system for entering, managing, and analyzing fish capture data from streams. Research Note INT-352, Intermountain Forest & Range Research Station. U.S.D.A. Forest Service, Ogden, UT.Google Scholar
  47. Vales, D. G. & J. G. Haro, 1998. Habitos alimentarios de Astyanax cordovae (Günter, 1880) (Pisces, Characidae) en el río Primero (Suquía) (Córdoba, Argentina). Natura Neotropicalis 29: 89–96.Google Scholar
  48. Vidal, N., N. Zaldúa, A. D’Anatro & D. E. Naya, 2014. Are the most plastic species the most abundant ones? an assessment using a fish assemblage. PLoS ONE 9: e92446.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Wootton, R. J., 1977. Effect of food limitation during the breeding season on the size, body components and egg production of female sticklebacks (Gasterosteus aculeatus). Journal of Animal Ecology 46: 823–834.CrossRefGoogle Scholar
  50. Wootton, R. J., 1991. Ecology of Teleost Fishes. Chapman and Hall, London.Google Scholar
  51. Xu, J., Z. Wen, Z. Gong, M. Zhang, P. Xie & L.-A. Hansson, 2012. Seasonal trophic niche shift and cascading effect of a generalist predator fish. PLoS ONE 7: e49691.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Yoneda, M. & P. J. Wright, 2005. Effects of varying temperature and food availability on growth and reproduction in first-time spawning female Atlantic cod. Journal of Fish Biology 67: 1225–1241.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ivan González-Bergonzoni
    • 1
    • 2
    • 3
  • Erik Jeppesen
    • 1
    • 2
    • 4
  • Nicolás Vidal
    • 1
    • 2
    • 3
  • Franco Teixeira-de Mello
    • 3
  • Guillermo Goyenola
    • 3
  • Anahí López-Rodríguez
    • 3
  • Mariana Meerhoff
    • 1
    • 3
  1. 1.Department of Bioscience and Arctic Research CentreAarhus UniversitySilkeborgDenmark
  2. 2.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  3. 3.Departamento de Ecología Teórica y Aplicada, CURE-Facultad de CienciasUniversidad de la RepúblicaMaldonadoUruguay
  4. 4.Greenland Climate Research Centre (GCRC)Greenland Institute of Natural ResourcesNuukGreenland

Personalised recommendations