, Volume 774, Issue 1, pp 155–166 | Cite as

Ponds and their catchments: size relationships and influence of land use across multiple spatial scales

  • Milan Novikmec
  • Ladislav Hamerlík
  • Dušan Kočický
  • Richard Hrivnák
  • Judita Kochjarová
  • Helena Oťaheľová
  • Peter Paľove-Balang
  • Marek Svitok


The information on both the catchment land use and catchment area has the potential to be adopted into the conservation and management of ponds. There have been, however, few attempts to describe the effects of land use acting at various spatial scales on ponds and the studies were restricted to specific categories of ponds. This paper presents a study on 92 ponds distributed over a broad range of environmental conditions in Central Europe. We combined an extensive field survey and a detailed analysis of sediment and water chemistry with GIS-derived data to estimate the relationship between the area of the ponds and the area of their catchments, and to assess the relationship between pond physico-chemical conditions and land use across multiple spatial scales. Relating the area of ponds to the area of their catchments, we found a significant positive relationship (r = 0.72). Considering land use effects on pond conditions, catchment-scale land use was the only significant spatial extent influencing the physico-chemical conditions. Most notably, the proportion of intensively exploited land (arable land, urban areas) in the catchment scale was positively correlated with the deterioration of pond physico-chemical properties. The results of the study suggest that effective conservation of ponds cannot be achieved merely through the management of narrow buffer zones around them but should involve maintenance of less intensive land use within the whole catchment. Moreover, easily accessible catchment-scale GIS data could serve as a decision-support tool for cost-effective management strategies aimed at improving pond physico-chemical conditions.


Landscape management Water chemistry Biodiversity conservation Buffer zones 



This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0059-11. We thank Miro Očadlík, Zuzka Matúšová, and Barbora Reduciendo Klementová for their tireless field efforts and Dušan Senko for providing the climate data. We are grateful to the guest editors of the special issue and the two anonymous referees whose suggestions resulted in an improved manuscript.

Compliance with ethical standards

Ethical standards

Authors declare that manuscript complies with the Ethical Standards applicable for Hydrobiologia journal.


  1. Akasaka, M., N. Takamura, H. Mitsuhashi & Y. Kadono, 2010. Effects of land use on aquatic macrophyte richness and water quality of ponds. Freshwater Biology 55: 909–922.CrossRefGoogle Scholar
  2. Alahuhta, J., A. Kanninen & K.-M. Vuori, 2012. Response of macrophyte communities and status indexs to natural gradients and land use in boreal lakes. Aquatic Botany 103: 106–114.CrossRefGoogle Scholar
  3. Biggs, J., P. Williams, M. Whitfield, P. Nicolet & A. Weatherby, 2005. 15 years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 693–714.CrossRefGoogle Scholar
  4. Bilton, D. T., L. McAbendroth, A. Bedford & P. M. Ramsay, 2006. How wide to cast the net? Cross-taxon congruence of species richness, community similarity and indicator taxa in ponds. Freshwater Biology 51: 578–590.CrossRefGoogle Scholar
  5. Bird, M. S. & J. A. Day, 2014. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands. PLoS ONE 9(2): e88935.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buck, O., D. K. Niyogi & C. R. Townsend, 2004. Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environmental Pollution 130: 287–299.CrossRefPubMedGoogle Scholar
  7. Canty, A. & B. Ripley, 2014. boot: Bootstrap R (S-Plus) functions. R package version 1.3-13.Google Scholar
  8. Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.CrossRefGoogle Scholar
  9. Céréghino, R., D. Boix, H.-M. Cauchie, K. Martens & B. Oertli, 2014. The ecological role of ponds in a changing world. Hydrobiologia 723: 1–6.CrossRefGoogle Scholar
  10. Davies, B. R., J. Biggs, J. T. Lee & S. Thompson, 2004. Identifying optimum locations for new ponds. aquatic conservation – marine and freshwater. Ecosystems 14: 5–24.Google Scholar
  11. Davies, B. R., J. Biggs, P. J. Williams, J. T. Lee & S. Thompson, 2008a. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597: 7–17.CrossRefGoogle Scholar
  12. Davies, B. R., J. Biggs, P. Williams, M. Whitfield, P. Nicolet, D. Sear, S. Bray & S. Maund, 2008b. Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agriculture, Ecosystems and Environment 125: 1–8.CrossRefGoogle Scholar
  13. Della Bella, V., M. Bazzanti & F. Chiarotti, 2005. Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water, permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 583–600.CrossRefGoogle Scholar
  14. Declerck, S., T. De Bie, D. Ercken, H. Hampel, S. Schrijvers, J. Van Wichelen, V. Gillard, R. Mandiki, B. Losson, D. Bauwens, S. Keijers, W. Vyverman, B. Goddeeris, L. De Meester, L. Brendonck & K. Martens, 2006. Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biological Conservation 131: 523–532.CrossRefGoogle Scholar
  15. De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van de Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.CrossRefGoogle Scholar
  16. Desmet, P. J. J. & G. Govers, 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation 51: 427–433.Google Scholar
  17. Efron, B., 1987. Better bootstrap confidence interval. Journal of the American Statistical Association 82: 171–200.CrossRefGoogle Scholar
  18. Fraterrigo, J. M. & J. A. Downing, 2008. The influence of land use on lake nutrients varies with watershed transport capacity. Ecosystems 11: 1021–1034.CrossRefGoogle Scholar
  19. Gee, J. H. R., B. D. Smith, K. M. Lee & S. Wynne-Griffiths, 1997. The ecological basis of freshwater pond management for biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 7: 91–104.CrossRefGoogle Scholar
  20. Gordon, N. D., T. A. McMahon & B. L. Finlayson, 1992. Stream Hydrology: An Introduction for Ecologists. John Wiley & Sons, Chichester.Google Scholar
  21. Hamerlík, L., M. Svitok, M. Novikmec, M. Očadlík & P. Bitušík, 2014. Local, among-site, and regional diversity patterns of benthic macroinvertebrates in high altitude waterbodies: do ponds differ from lakes? Hydrobiologia 723: 41–52.CrossRefGoogle Scholar
  22. Houlahan, J. E. & C. S. Findlay, 2004. Estimating the ‘critical’ distance at which adjacent land-use degrades wetland water and sediment quality. Landscape Ecology 19: 677–690.CrossRefGoogle Scholar
  23. Hrivnák, R., H. Oťaheľová, J. Kochjarová & P. Paľove-Balang, 2013. Effect of environmental conditions on species composition of macrophytes in two distinct biogeographical regions of Central Europe. Knowledge and Management of Aquatic Ecosystems 411: 09.CrossRefGoogle Scholar
  24. Hrivnák, R., J. Kochjarová, H. Oťaheľová, P. Paľove-Balang, M. Slezák & P. Slezák, 2014. Environmental drivers of macrophyte species richness in artificial and natural aquatic water bodies – comparative approach from two central European regions. Annales de Limnologie-International Journal of Limnology 50: 269–278.CrossRefGoogle Scholar
  25. Hutchinson, M. F., 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106: 211–232.CrossRefGoogle Scholar
  26. Hutchinson, M. F., T. Xu & J. A. Stein, 2011. Recent progress in the ANUDEM elevation gridding procedure. In Proceedings of the Geomorphometry, 2011, Redlands, CA, USA, 7–9 September 2011: 19–22.Google Scholar
  27. Jones, J. R., M. F. Knowlton, D. V. Obrecht & E. A. Cook, 2004. Importance of landscape variables and morphology on nutrients in Missouri reservoirs. Canadian Journal of Fisheries and Aquatic Sciences 61: 1503–1512.CrossRefGoogle Scholar
  28. Kizuka, T., H. Yamada, M. Yazawa & H.-H. Chung, 2008. Effects of agricultural land use on water chemistry of mire pools in the Ishikari Peatland, northern Japan. Landscape and Ecological Engineering 4: 27–37.CrossRefGoogle Scholar
  29. Lake, J. L., R. A. McKinney, F. A. Osterman, R. J. Pruell, J. Kiddon, S. A. Ryba & A. D. Libby, 2001. Stable nitrogen isotopes as indicators of anthropogenic activities in small freshwater systems. Canadian Journal of Fisheries and Aquatic Sciences 58: 870–878.CrossRefGoogle Scholar
  30. Manly, B. F. J., 1997. Randomization. Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, London.Google Scholar
  31. Martínez-Sanz, C., C. Fernández-Aláez & F. García-Criado, 2012. Richness of littoral macroinvertebrate communities in mountain ponds from NW Spain: what factors does it depend on? Journal of Limnology 71: 154–163.CrossRefGoogle Scholar
  32. Mortvedt, J. J., 1996. Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Research 43: 55–61.CrossRefGoogle Scholar
  33. Nicolet, P., J. Biggs, G. Fox, M. J. Hodson, C. Reynolds, M. Whitfield & P. Williams, 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biological Conservation 120: 261–278.CrossRefGoogle Scholar
  34. Nielsen, A., D. Trolle, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. E. Olesen & E. Jeppesen, 2012. Watershed land use effects on lake water quality in Denmark. Ecological Applications 22: 1187–1200.CrossRefPubMedGoogle Scholar
  35. Oertli, B., D. A. Joye, E. Castella, R. Juge, D. Cambin & J. B. Lachavanne, 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59–70.CrossRefGoogle Scholar
  36. Oertli, B., J. Biggs, R. Céréghino, P. Grillas, P. Joly & J. B. Lachavanne, 2005. Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 535–540.CrossRefGoogle Scholar
  37. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2014. Vegan: Community ecology package. R package version 2.2-0.Google Scholar
  38. R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  39. Soranno, P. A., S. L. Hubler, S. R. Carpenter & R. C. Lathrop, 1996. Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecological Applications 6: 865–878.CrossRefGoogle Scholar
  40. Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: does it make any difference? Archiv Für Hydrobiologie 162: 143–165.CrossRefGoogle Scholar
  41. Svitok, M., R. Hrivnák, H. Oťaheľová, D. Dúbravková, P. Paľove-Balang & V. Slobodník, 2011. The importance of local and regional factors on the vegetation of created wetlands in central Europe. Wetlands 31: 663–674.CrossRefGoogle Scholar
  42. Theodoropoulos, C. H., D. Aspridis & J. Iliopoulou-Georgudaki, 2015. The influence of land use on freshwater macroinvertebrates in a regulated and temporary Mediterranean river network. Hydrobiologia. doi: 10.1007/s10750-015-2187-3.Google Scholar
  43. Townsend, C. R., S. Dolédec, R. Norris, K. Peacock & C. J. Arbuckle, 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology 48: 768–785.CrossRefGoogle Scholar
  44. Williams, P., M. Whitfield & J. Biggs, 2008. How can we make new ponds biodiverse? A case study monitored over seven years. Hydrobiologia 597: 137–148.CrossRefGoogle Scholar
  45. Wischmeier, W. H. & D. D. Smith, 1978. Predicting Rainfall erosion losses: a guide to conservation planning. U.S. Department of Agriculture, Agric., Agriculture Handbook No. 537.Google Scholar
  46. World Meteorological Organization, 2011. Guide to climatological practices. 3rd Edition – Guide WMO, No 100, Geneva.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Milan Novikmec
    • 1
  • Ladislav Hamerlík
    • 2
  • Dušan Kočický
    • 3
  • Richard Hrivnák
    • 4
  • Judita Kochjarová
    • 4
    • 5
  • Helena Oťaheľová
    • 4
  • Peter Paľove-Balang
    • 6
  • Marek Svitok
    • 1
    • 7
  1. 1.Department of Biology and General EcologyTechnical University in ZvolenZvolenSlovakia
  2. 2.Department of Biology and EcologyMatej Bel UniversityBanská BystricaSlovakia
  3. 3.ESPRIT, Ltd.Banská ŠtiavnicaSlovakia
  4. 4.Institute of BotanySlovak Academy of SciencesBratislavaSlovakia
  5. 5.Botanical Garden – Detached UnitComenius University in BratislavaBlatnicaSlovakia
  6. 6.Institute of Biological and Ecological SciencesP. J. Šafárik University in KošiceKošiceSlovakia
  7. 7.Department of Aquatic Ecology, Centre of Ecology, Evolution and BiogeochemistryEawag, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland

Personalised recommendations